The effects of lipopolysaccharide (LPS) and several cytokines on the c-fos and c-jun mRNA expression were examined in primary cultured astrocytes. Either LPS (500 ng/mL) or interferon-gamma (IFN-gamma; 5 ng/mL) alone increased the level of c-fos mRNA (1 h). However, tumor necrosis factor-alpha (TNF-alpha; 10 ng/mL) or interleukin-1beta (IL-1beta; 5 ng/mL) alone showed no significant induction of the level of c-fos mRNA. TNF-alpha showed a potentiating effect in the regulation of LPS-induced c-fos mRNA expression, whereas LPS showed an inhibitory action against IFN-gamma-induced c-fos mRNA expression. LPS, but not TNF-alpha, IL-1beta and IFN-gamma, increased the level of c-jun mRNA (1 h). TNF-alpha and IFN-gamma showed an inhibitory action against LPS-induced c-jun mRNA expression. Both phorbol 12-myristate 13-acetate (PMA; 2.5 mM) and forskolin (FSK; 5 mM) increased the c-fos and c-jun mRNA expressions. In addition, the level of c-fos mRNA was expressed in an antagonistic manner when LPS was combined with PMA. When LPS was co-treated with either PMA or FSK, it showed an additive interaction for the induction of c-jun mRNA expression. Our results suggest that LPS and cytokines may be actively involved in the regulation of c-fos and c-jun mRNA expressions in primary cultured astrocytes. Moreover, both the PKA and PKC pathways may regulate the LPS-induced c-fos and c-jun mRNA expressions in different ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02980080 | DOI Listing |
Mol Cancer Res
January 2025
Cleveland Clinic, Cleveland, OH, United States.
Epidermal growth factor receptor (EGFR) is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors is limited to cancers that harbor sensitizing mutations in the EGFR gene due to dose limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wildtype or mutant EGFR. We found that YES1 is highly expressed in triple negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels.
View Article and Find Full Text PDFGenet Mol Biol
January 2025
King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), College of Medicine, Riyadh, Saudi Arabia.
Sperm-associated antigen 9 (SPAG9) is a member of cancer-testis antigen, having characteristics of a scaffold protein, which is involved in the c-Jun N-terminal kinase JNK signaling pathway, suggesting its key involvement in different physiological processes, such as survival, apoptosis, tumorigenesis, and cell proliferation. We identified two families (A and B) having multisystem features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Whole genome sequencing (WGS) in families A and B revealed a homozygous frameshift variant (c.
View Article and Find Full Text PDFBiofilm
June 2025
Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .
View Article and Find Full Text PDFToxicology
January 2025
Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan. Electronic address:
Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China.
Sepsis is often a cause of mortality in patients admitted to the intensive care unit. Notably, the heart is the organ most susceptible to the impact of sepsis and this condition is referred to as sepsis‑induced cardiomyopathy (SIC). Low triiodothyronine (T3) syndrome frequently occurs in patients with sepsis, and the heart is one of the most important target organs for the action of T3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!