Identification of crack path of inter- and transgranular fractures in sintered silicon nitride by in situ TEM.

J Electron Microsc (Tokyo)

Institute of Engineering Innovation, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Japan.

Published: June 2004

Inter- and/or transgranular crack paths in sintered silicon nitride (Si3N4) during fracture were investigated by in situ straining experiments in a transmission electron microscope at room temperature, using a high-precision micro-indenter. By this technique, cracks introduced in an in situ manner were observed to propagate in the grain interior and along grain boundaries. High-resolution electron microscopy (HREM) observation revealed that the crack propagation takes place at an interface between Si3N4 grains and an intergranular glassy film (IGF) in the case of intergranular fractures. According to the results by previous molecular dynamics simulations, a number of dangling bonds are present at the Si3N4/IGF interface, which should result in the observed fracture behavior at the interface. On the other hand, the crack path introduced during transgranular fracture of Si3N4 grains was found to be sharp and straight. The observed crack propagated towards [1120] inside the Si3N4 grain with the crack surface parallel to the (1100) plane. The HREM observations of crack walls revealed them to be atomically flat. The atomic termination of the crack walls was identified in combination with image simulations based on atomic models of the cleaved crack walls.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/53.2.121DOI Listing

Publication Analysis

Top Keywords

crack walls
12
crack path
8
sintered silicon
8
silicon nitride
8
crack
8
si3n4 grains
8
identification crack
4
path inter-
4
inter- transgranular
4
transgranular fractures
4

Similar Publications

When long-span beams undergo large, the strength of the beam material cannot be fully utilized. To solve this problem, a prestressed unequal-walled rectangular concrete-filled steel box (PURCFSB) beam is proposed in this paper. The prestressing is added to the concrete-filled steel tubular (CFST) beam and the section is designed.

View Article and Find Full Text PDF

Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate cracked teeth and vertical root fracture observable on micro-CT images of extracted roots of mandibular incisors, after fiber post removal.

Materials And Methods: Thirty mandibular incisors were selected with any degree of slight incisal wear inspected with the aid of a stereomicroscope under 12x magnification, in order to have a group of young adult specimens according to the criteria of Hugoson et al. A sample of twelve mandibular incisors were selected, aged between 20 and 30 years old, with similar dentine volume and thickness.

View Article and Find Full Text PDF

Experimental and Numerical Analysis of Thermal Fatigue of Grey Cast Iron Ingot Mould.

Materials (Basel)

November 2024

Faculty of Foundry Engineering, AGH University of Krakow, Reymonta 23 St., 30-059 Krakow, Poland.

This article presents the results of experimental studies and numerical calculations that were conducted to analyse the phenomena that occur during the operation of an ingot mould that is designed for casting steel ingots. The studies were conducted on an experimental stand in a foundry on an ingot mould that was designed to make ingots that weigh up to six tons; they consisted of determining the temperature of the ingot mould and measuring the displacements of its walls during filling with steel and cooling. These studies were used to create and verify a numerical model that was used to determine the temperatures, displacements, deformations, and stresses in ingot mould walls during the operating cycle using the FEM method.

View Article and Find Full Text PDF

A high stretchability fiber based on a synergistic three-dimensional conductive network for wide-range strain sensing.

Nanoscale Adv

November 2024

Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China

Fiber strain sensors are promising for constructing high-performance wearable electronic devices due to their light weight, high flexibility and excellent integration. However, the conductivity of most reported fiber strain sensors is severely degraded, following deformation upon stretching, and it is still a considerable challenge to achieve both high conductivity and stretchability. Herein, we have fabricated a fiber strain sensor with high conductivity and stretchability by integrating the AgNPs into the multi-walled carbon nanotube/graphene/thermoplastic polyurethane (MWCNT/GE/TPU) fiber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!