Sepsis and septic shock, the systemic immunologic and pathophysiologic response to overwhelming infection, are associated with perturbation of a variety of metabolic cell pathways and with multiple organ failure (MOF) including cardiac depression. This depression has been attributed to the effect of several circulating and locally produced proinflammatory mediators. Recent data suggest that bacterial nucleic acids can produce profound systemic inflammatory responses characterized by circulatory shock in intact animals. In this study, bacterial DNA and RNA derived from pathogenic clinical S. aureus and E. coli isolates are shown to induce early concentration-dependent depression of maximum extent and peak velocity of contraction of electrically paced neonatal rat ventricular myocytes in culture. Significant but more modest depression was generated by a nonpathogenic E. coli isolate. Pretreatment with a DNase or RNase abrogated this effect. Further, synthetic, double-stranded RNA (dsRNA) also induced concentration-dependent depression of myocyte contraction, with the effect also being prevented by pretreatment with RNase. These data suggest that bacterial DNA and RNA may contribute to myocardial depression during bacterial sepsis and septic shock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00024382-200404000-00012 | DOI Listing |
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.
Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.
View Article and Find Full Text PDFFoods
December 2024
Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.
Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.
Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!