Treatment of the contaminated implant surface by mechanical and chemotherapeutic means has met with mixed success. Incomplete surface debridement or alteration of the implant surface could compromise attempts at grafting and reintegration of the implant body. Development of a laser system operating at 2780 nm and using an ablative hydrokinetic process offers the possibility for more efficient decontamination and debridement. The Er,Cr: YSGG laser is evaluated and compared with the most commonly used chemotherapeutic modality for treatment of the implant surface. A scanning electron microscope study is presented comparing YSGG ablation to citric acid treatment of the titanium plasma sprayed and HA-coated implant surface. We can conclude that laser ablation using the YSGG laser is highly efficient at removing potential contaminants on the roughened implant surface while demonstrating no effects on the titanium substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.id.0000127521.06443.0b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!