Biosynthesis of the anticancer drug Taxol involves 19 enzymatic steps from the universal diterpenoid progenitor geranylgeranyl diphosphate derived by the plastidial methylerythritol phosphate pathway for isoprenoid precursor supply. To gain further insight about Taxol biosynthesis relevant to the improved production of this drug and to draw inferences about the organization, regulation, and origins of this complex natural product pathway, random sequencing of a cDNA library derived from Taxus cuspidata cells (induced for taxoid biosynthesis with methyl jasmonate) was undertaken. This effort revealed surprisingly high abundances for transcripts of several of the 12 defined genes of Taxol biosynthesis, yielded cDNAs encoding two previously uncharacterized cytochrome P450 taxoid hydroxylases, and provided candidate genes for all but one of the remaining seven steps of this extended sequence of reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC428488PMC
http://dx.doi.org/10.1073/pnas.0403009101DOI Listing

Publication Analysis

Top Keywords

taxol biosynthesis
12
random sequencing
8
cdna library
8
biosynthesis
5
sequencing induced
4
induced taxus
4
taxus cell
4
cell cdna
4
library identification
4
identification clones
4

Similar Publications

The History of Studies on Oxetane Ring Formation in Paclitaxel Biosynthesis.

Chembiochem

January 2025

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Department of Biosynthesis of Natural Products, 1# Xian Nong Tan Street, 100050, Beijing, CHINA.

There is no doubt that breakthroughs in the enzyme-mediated formation of the oxetane ring in paclitaxel biosynthesis constitute significant milestones in the biosynthesis of complex natural products. In this review, we summarize the understanding of the biosynthesis of the oxetane ring of paclitaxel from different viewpoints. Generally, it covers five aspects, (1) a different understanding of the mechanistic formation of the oxetane ring on the basis of sound chemical reasoning, (2) a reasonable speculation of the biosynthetic pathways and suitable surrogate substrates for oxetane ring formation based on the natural and chemical logical analysis, (3) Taxus genome-enabled enzymes identification, (4) the discovery of different enzymes that mediate oxetane ring formation, and (5) a mechanistic investigation involving the use of isotopic labelling experiments and quantum chemical calculations.

View Article and Find Full Text PDF

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!