Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA.

Biochim Biophys Acta

Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

Published: June 2004

The cyanobacterium Synechococcus PCC 7942 grown under iron starvation assembles a supercomplex consisting of a trimeric Photosystem I (PSI) complex encircled by a ring of 18 CP43' or IsiA complexes. It has previously been shown that PSI of Synechococcus PCC 7942 contains less special long-wavelength ('red') chlorophylls than PSI of most other cyanobacteria. Here we present a comparative analysis by time-resolved absorption difference and fluorescence spectroscopy of the processes of energy transfer and trapping in trimeric PSI and PSI-IsiA supercomplexes from Synechococcus PCC 7942. All experiments were performed with the primary electron donor of PSI (P700) in the oxidized state. Our data suggest that in the PSI complex the excitation energy is equilibrated with a lifetime of 0.6 ps among the so-called bulk chlorophylls, is distributed in 3-4 ps between the bulk and red chlorophylls, and is trapped in the reaction center in 19 ps. This trapping time is shorter than that observed for other cyanobacteria, which we attribute to the lower content of red chlorophylls in PSI of this organism. In the PSI-IsiA supercomplexes, the distribution of excited states is blue-shifted compared to that in PSI, leading to a lengthening of the equilibration processes. We attributed a phase of about 1 ps to initial energy equilibration steps among the IsiA and PSI core bulk chlorophylls, a 5-7 ps phase to equilibration between bulk and red chlorophylls within the PSI core, and a 38 ps phase to trapping in the reaction center. The data suggest that the excitation energy is equilibrated among the IsiA and PSI core antenna chlorophylls before trapping occurs. Data analysis based on a simple kinetic model revealed an intrinsic rate constant for energy transfer from IsiA to PSI in the range of 2+/-1 ps. Based on this value we suggest the presence of one or more linker chlorophylls between the IsiA and PSI core complexes. These results confirm that IsiA acts as an effective light-harvesting antenna for PSI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2004.02.002DOI Listing

Publication Analysis

Top Keywords

synechococcus pcc
16
pcc 7942
16
isia psi
16
psi core
16
psi
14
energy transfer
12
chlorophylls psi
12
red chlorophylls
12
transfer trapping
8
psi complex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!