Catharanthus roseus cell suspension cultures are capable of converting exogenously supplied curcumin to various glucosides. The glucosylation efficiency is enhanced by addition of methyl jasmonate (MJ) to the cultures prior to curcumin administration. Two cDNAs encoding UDP-glucosyltransferases (CaUGT1 and CaUGT2) were isolated from a cDNA library of cultured C. roseus cells, using a PCR method directed at the conserved UDP-binding domain of plant glycosyltransferases. The sequence identity between their deduced amino acid sequences was 27%. The expression of both genes was up-regulated by addition of MJ to the cell cultures although the mRNA level of CaUGT1 was much lower than that of CaUGT2. The corresponding cDNAs were expressed in Escherichia coli as fusion proteins with maltose-binding protein. The recombinant CaUGT1 exhibited no glucosylation activity with either curcumin or curcumin monoglucoside as substrate, whereas the recombinant CaUGT2 catalyzed the formation of curcumin monoglucoside from curcumin and also conversion of curcumin monoglucoside to curcumin diglucoside. The use of the recombinant CaUGT2 may provide a useful new route for the production of curcumin glucosides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2004.04.056 | DOI Listing |
J Biotechnol
February 2021
Plant Biotechnology Department, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India. Electronic address:
Curcumin has ignited global interest as an elite drugable molecule, owing to its time-honoured pharmacological activities against diverse human ailments. Limited natural accessibility and poor oral bioavailability caused major hurdles in the curcumin-based drug development process. We report the first successful testimony of curcumin and its glucoside synthesis in Atropa belladonna hairy roots (HR) through metabolic engineering.
View Article and Find Full Text PDFNeurochem Res
November 2016
Department of Neurochemistry, National Institute of Mental Health and Neurosciences, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India.
Curcumin (CUR), a dietary polyphenol has diverse pharmacologic effects, but is limited by poor bioavailability. This is probably due to decreased solubility, cellular uptake and stability. In order to enhance its solubility and bioavailability, we synthesized the CUR bioconjugate curcumin monoglucoside (CMG) and tested its bioavailability, neuroprotective and anti-apoptotic propensity against rotenone (ROT) induced toxicity in N27 dopaminergic neuronal cells and Drosophila models.
View Article and Find Full Text PDFFEBS Lett
June 2004
Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8603, Japan.
Catharanthus roseus cell suspension cultures are capable of converting exogenously supplied curcumin to various glucosides. The glucosylation efficiency is enhanced by addition of methyl jasmonate (MJ) to the cultures prior to curcumin administration. Two cDNAs encoding UDP-glucosyltransferases (CaUGT1 and CaUGT2) were isolated from a cDNA library of cultured C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!