To use two small fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the Japanese medaka Oryzias latipes (Belloniformes) as testing models in molecular ecotoxicology, we have cloned the cytochrome P450 1A (CYP1A) gene after screening of both genomic DNA libraries, and sequenced 11,863 and 7,243 bp including all the exons and introns with promoter regions, respectively. The Rivulus and the medaka CYP1A gene consisted of seven exons (including non-coding exons) with high homology to mammals. In the promoter region, Rivulus CYP1A gene has seven xenobiotic response elements (XREs) and two metal response elements (MREs), while the Japanese medaka CYP1A gene has six XREs and four MREs. Interestingly, medaka CYP1A gene has a number of MREs at the promoter, which may affect its response on metal exposure. We describe here the gene structure of both fish CYP1A genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2004.03.006 | DOI Listing |
Sci Rep
January 2025
Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.
The overall aim of the present study was to determine if exposure to three high volume plastic additives, including diethylhexyl phthalate (DEHP), bisphenol A (BPA) and benzotriazoles (BT), have the potential to promote adverse effects in Atlantic cod (G. morhua). Ex vivo precision cut - liver slices (PCLS) from six male juvenile Atlantic cod were exposed to four concentrations of mono-(2-ethylhexyl)-phthalate (MEHP, the main metabolite of DEHP), BPA and BT both singly and in mixtures ranging from 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden. Electronic address:
In vitro models based on permanent fish liver cell lines have proven to be versatile tools for examining chemical biotransformation and toxicity. However, their in vivo relevance remains uncertain due to their potentially de-differentiated phenotype. Here, we investigate whether a 3D cell culture environment can restore hepatocyte-like properties of the Rainbow trout liver cell line RTL-W1.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy. Electronic address:
The present study investigates the potential interaction between nano‑titanium dioxide (nano-TiO) and the water accommodated fraction (WAF) of crude oil and associated chemicals on bioavailability and biotransformation responses in the European sea bass (Dicentrarchus labrax). An in vivo (48-h) waterborne exposure with nano-TiO (10 mgL), crude oil WAF (0.068 gL), alone and in combination was performed.
View Article and Find Full Text PDFChemosphere
October 2024
Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden. Electronic address:
Advanced materials are materials that have been engineered to exhibit novel or enhanced properties that confer superior performance when compared to conventional materials. Here, we evaluated the impact of TiC MXenes, a two-dimensional (2D) material, on the adverse effects caused by polycyclic aromatic hydrocarbons. To this end, we studied benzo[a]pyrene denoted here as B[a]P as a model compound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!