We have expanded our previously reported series of pyrazole-based inhibitors of the TGF-beta type I receptor kinase domain (TbetaR-I) to now include new 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole analogues. Limited examination of the SAR of this new series in both enzyme and cell based in vitro assays has revealed selectivity differences with respect to p38 MAP kinase (p38 MAPK) depending on the nature of the 'warhead' group on the dihydropyrrolopyrazole ring. As with our original pyrazole series, phenyl substituents tended to show greater selectivity against p38 MAPK than those comprised of the quinoline-4-yl moiety. We have also achieved co-crystallization and X-ray analysis of compounds 3 and 15, two potent examples of this new series, with the TbetaR-I receptor kinase domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2004.04.007 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Acta Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer.
View Article and Find Full Text PDFChin Clin Oncol
December 2024
Colorectal Cancer Center, Sichuan University West China Hospital, Chengdu, China; Department of Medical Oncology, Cancer Center, Sichuan University West China Hospital, Chengdu, China.
Background: Epstein-Barr virus-associated gastric cancer (EBVaGC) is characterized by higher lymphocytic infiltration, which predicts sensitivity to immunotherapy. However, there are few studies investigating the mechanisms of acquired resistance to programmed cell death protein 1 (PD-1) blockade and its subsequent treatment strategies for EBVaGC.
Case Description: We describe the case of a patient with EBVaGC who was initially treated with first-line chemotherapy plus Sintilimab, a fully humanized anti-PD-1 monoclonal antibody, resulting in a near-complete response.
J Appl Toxicol
January 2025
Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!