Neuronal systems undergo many significant changes during the course of brain development. To characterize the developmental changes in the substantia nigra pars reticulata (SNr) associated with the expression of group I metabotropic glutamate receptors (mGluRs), we used the immunoperoxidase and immunogold methods at the electron microscope level to determine whether the subcellular and subsynaptic patterns of distribution of mGluR1a and mGluR5 differ between young (P14-P18) and adult (>2 months) rats. The SNr of young rats contained a significantly higher density of labeled unmyelinated axons for both receptor subtypes. In addition, mGluR5-immunoreactive glial processes were very abundant in young rats but absent in the adults. On the other hand, the relative proportion of immunoreactive dendrites was the same for both age groups. Analysis of immunogold-labeled rat SNr revealed similar proportions of plasma membrane-bound mGluR1a and mGluR5 in adult (59.8 and 19.4%, respectively) and young (60.6 and 18.4%, respectively) rats. The pattern of subsynaptic localization of mGluR1a also remained the same between young and adults. However, the proportion of extrasynaptic mGluR5 decreased, whereas proportions of gold particles associated with symmetric synapses increased in adults. The results of this study demonstrate significant differences in the expression of group I mGluRs in the SNr of young and adult rats. These findings support a role for group I mGluRs during development and emphasize the importance of using brain tissue from age-matched subjects when attempting to correlate functional data from young rat brain slices with immunocytochemical localization of group I mGluRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.20163 | DOI Listing |
Exp Neurol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China. Electronic address:
Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA.
View Article and Find Full Text PDFNutrients
December 2024
Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.
View Article and Find Full Text PDFNeuroscience
February 2025
Northeast Ohio Medical University, Anatomy and Neurobiology, Rootstown, OH, USA. Electronic address:
Metabotropic glutamate receptors (mGluRs) are widely expressed throughout the central nervous system. They are linked to G-protein coupled receptors and are known to modulate synaptic transmission. The data regarding their expression in auditory structures are not systematic and mainly originate from physiological studies where expression was used to support physiological findings.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA. Electronic address:
Synaptic adhesion molecules are essential components of the synapse, yet the diversity of these molecules and their associated functions remain to be fully characterized. Extracellular leucine rich repeat and fibronectin type III domain containing 1 (ELFN1) is a postsynaptic adhesion molecule in the brain that has been increasingly implicated in human neurological disease. ELFN1 is best known for trans-synaptically modulating group III metabotropic glutamate receptors (mGluRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!