This study investigated the potential of human skeletal myoblast carrying human VEGF(165) for angiomyogenesis for cardiac repair. A porcine heart model of chronic infarction was created in 18 female swine by coronary artery ligation. The animals were randomized into: group 1, DMEM injected ( n=6), group 2, myoblast transplanted ( n=5) and group 3, VEGF(165) myoblast transplanted ( n=7). Three weeks later 5 ml DMEM containing 3x10(8) myoblast carrying exogenous genes were injected into 20 sites in left ventricle intramyocardially in groups 2 and 3. Group 1 animals were injected 5 ml DMEM without cells. Animals were kept on 5 mg/kg cyclosporine per day for 6 weeks. Regional blood flow was measured using fluorescent microspheres. The heart was explanted between 6-12 weeks after transplantation for histological studies. Histological examination showed survival of lac-z expressing myoblasts in host tissue. Capillary density at low power field (x100) was 57.13+/-4.20 in group 3 which was significantly higher than the other groups. Regional blood flow was significantly improved 6 and 12 weeks after transplantation, which was 2.41+/-0.11 and 3.39+/-0.11 ml(-1) min(-1) g(-1), respectively, in group 3. Left ventricular ejection fraction increased from 31.25+/-4.09% to 43.0+/-2.68% at 6 weeks in group 3. Human myoblasts are potential transgene carriers for the myocardium, in addition to strengthening the weakened myocardium through myogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-004-0546-zDOI Listing

Publication Analysis

Top Keywords

angiomyogenesis cardiac
8
cardiac repair
8
human myoblasts
8
myoblast carrying
8
myoblast transplanted
8
regional blood
8
blood flow
8
weeks transplantation
8
group
7
human
5

Similar Publications

A Minimally Invasive Exosome Spray Repairs Heart after Myocardial Infarction.

ACS Nano

July 2021

Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States.

Myocardial infarction (MI) remains the most common cause of death worldwide. Many MI survivors will suffer from recurrent heart failure (HF), which has been recognized as a determinant of adverse prognosis. Despite the success of improved early survival after MI by primary percutaneous coronary intervention, HF after MI is becoming the major driver of late morbidity, mortality, and healthcare costs.

View Article and Find Full Text PDF

Stem cell therapy is a promising strategy for cardiac repair. However, clinical efficacy is hampered by poor cell engraftment and the elusive repair mechanisms of the transplanted stem cells. The lung is a reservoir of hematopoietic stem cells (HSCs) and a major biogenesis site for platelets.

View Article and Find Full Text PDF

Cell therapy has been a promising strategy for cardiac repair after injury or infarction; however, low retention and engraftment of transplanted cells limit potential therapeutic efficacy. Seeding scaffold material with cells to create cardiac patches that are transplanted onto the surface of the heart can overcome these limitations. However, because patches need to be freshly prepared to maintain cell viability, long-term storage is not feasible and limits clinical applicability.

View Article and Find Full Text PDF

We engineered a microneedle patch integrated with cardiac stromal cells (MN-CSCs) for therapeutic heart regeneration after acute myocardial infarction (MI). To perform cell-based heart regeneration, cells are currently delivered to the heart via direct muscle injection, intravascular infusion, or transplantation of epicardial patches. The first two approaches suffer from poor cell retention, while epicardial patches integrate slowly with host myocardium.

View Article and Find Full Text PDF

Critical limb ischemia (CLI), foot ulcers, former amputation, and impaired regeneration are independent risk factors for limb amputation in subjects with diabetes. The present work investigates whether and by which mechanism diabetes negatively impacts on functional properties of muscular pericytes (MPs), which are resident stem cells committed to reparative angiomyogenesis. We obtained muscle biopsy samples from patients with diabetes who were undergoing major limb amputation and control subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!