A genome-wide map of single nucleotide polymorphisms (SNP) and a pattern of linkage disequilibrium (LD) between their alleles are being established in three main ethnic groups. An important question is the applicability of such maps to different populations within a main ethnic group. Therefore, we have developed high-resolution SNP, haplotype and LD maps of vitamin D receptor gene region in large samples from five populations. Comparative analysis reveals that the LD patterns are identical in all four European populations tested with two small regions of 1.3 and 5.7 kb at which LD is disrupted completely resulting in three block-like regions over which there is significant and extensive LD. In an African population the pattern is similar, but two additional LD-breaking spots are also apparent. This LD pattern suggests combined action of recombination hotspots and founder effects, but cannot be explained by random recombination and genetic drift alone. Direct comparison indicates that the tag SNPs selected in one European population effectively predict the non-tag SNPs in the other Europeans, but not in the Gambians, for this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddh169 | DOI Listing |
World Allergy Organ J
January 2025
Institute of Life Science, Chongqing Medical University, Chongqing, China.
Background: Allergic rhinitis (AR) is a common chronic respiratory disease that can lead to the development of various other conditions. Although genetic risk loci associated with AR have been reported, the connections between these loci and AR comorbidities or other diseases remain unclear.
Methods: This study conducted a phenome-wide association study (PheWAS) using known AR risk loci to explore the impact of known AR risk variants on a broad spectrum of phenotypes.
Gigascience
January 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Background: Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.
View Article and Find Full Text PDFHeredity (Edinb)
January 2025
Department of Evolution, Ecology and Organismal Biology, 2710 Life Science Bldg, University of California, Riverside, CA, 92521, USA.
Female preference exerts selection on male traits. How such preferences affect male traits, how female preferences change and the genetic correlation between male traits and female preference were examined by an experiment in which females were either mated to males they preferred (S lines) or to males chosen at random from the population (R lines). Female preference was predicted to increase the time spent calling by males.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 310012, China.
In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Biostatistics, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of GWAS risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!