To elucidate the beneficial effects of porcine follicular fluid (pFF) added to maturation medium on the sustenance of cytoplasmic maturation responsible for the subsequent developmental competence after in vitro fertilization (IVF) of porcine oocytes, we focused on the antioxidative role of pFF in its function of protecting oocytes from reactive oxygen species (ROS)-induced cell damage. Porcine follicular fluid collected from small (2-6 mm) follicles had about 7.2-fold higher levels of superoxide dismutase (SOD) activity than that of fetal bovine serum (FBS), and this activity was markedly blocked by the CuZn-SOD inhibitor, diethyldithiocarbamate (DETC). The interruption of meiotic progression and the increasing intracellular glutathione (GSH) content throughout the maturation period, as well as an outbreak of DNA damage in oocytes and cumulus cells were difficult to detect in oocytes cultured in a medium supplemented with 10% pFF, even in the presence of ROS generated by the hypoxanthine-xanthine oxidase system, whereas cell damage encompassed by ROS was prominent in oocytes cultured with 10% FBS and 10% pFF plus 100 microM DETC. Similarly, significant enhancement to the degree of transformation of the sperm nucleus into the male pronucleus (MPN) after in vitro fertilization was shown by the addition of pFF to the maturation medium. The presence of DETC during in vitro maturation reduced the ability of oocytes to promote MPN formation to the same extent as oocytes matured with FBS. The proportion developing to the blastocyst stage was increased in oocytes that matured with pFF, but this developmental competence was significantly lowered by treatment with DETC (P < 0.05). These findings suggest that pFF plays a critical role in protecting oocytes from oxidative stress through a higher level of radical scavenging activity elicited from SOD isoenzymes, resulting in the enhancement of cytoplasmic maturation responsible for developmental competence postfertilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.104.029264 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality globally. While immunotherapeutic approaches are effective in a subset of CRC patients, the majority of CRC cases receive limited benefits from immunotherapy. This study developed an immune subtype classification system based on diverse immune cells and pathways.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!