Instability of cryptic plasmids in Sinorhizobium meliloti laboratory strains SKhM1-188, DM7-R, and P108 as well as in their clones isolated from nodules of alfalfa grown during a long-term microvegetation experiment (120 days) was studied. The isolated clones of strains SKhM1-188 and DM7-R manifested stable inheritance of plasmids, whereas 12.7-14.0% of clones with changed plasmid profile were detected in a population of clones from strain P108. These segregants were designated as P108c. Segregants P108c exhibited significantly decreased symbiotic effectiveness, nitrogenase activity, and the competitiveness with respect to alfalfa, compared to the original strain P108. It was established that a 80-kb deletion occurred in a larger of two cryptic plasmids (240 and 230 kb) of segregants P108c. It was concluded that genetic rearrangements are possible in rhizobial clones that did not undergo structural transformation and retained viability in the nodule during the natural vegetation period of alfalfa.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea. Electronic address:
Highly succinylated succinoglycan (HS-SG) was prepared by reacting succinic anhydride with succinoglycan (SG) exopolysaccharide isolated from Sinorhizobium meliloti. The rheological, physicochemical properties, and antioxidant effects of HS-SG were evaluated in comparison with SG. NMR and FTIR analyses confirmed that HS-SG retained the characteristic glycosidic structure of SG while showing a relative increase in succinyl functional groups.
View Article and Find Full Text PDFPlant Sci
January 2025
UMR INRAE 1355, Université Nice Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France. Electronic address:
Flooding induces hypoxia in plant tissues, impacting various physiological and biochemical processes. This study investigates the adaptive response of the roots and nitrogen-fixing nodules of Medicago truncatula in symbiosis with Sinorhizobium meliloti under short-term hypoxia caused by flooding. Four-week-old plants were subjected to flooding for 1 to 4 days.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
December 2024
Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
Int J Mol Sci
November 2024
Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
The phenylpropanoid biosynthesis pathway is involved in the response of plants to stress factors, including microorganisms. This paper presents how free-living strains of rhizobacteria KK5, KK7, KK4, and the symbiotic strain KK13 affect the expression of genes encoding phenylalanine ammonia-lyase (PAL), the activity of this enzyme, and the production of phenolic compounds in . Seedlings were inoculated with rhizobacteria, then at T0, T24, T72, and T168 after inoculation, the leaves and roots were analyzed for gene expression, enzyme activity, and the content of phenolic compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!