A modified Neuhoff's colloidal Coomassie Blue G-250 stain is reported, dubbed "blue silver" on account of its considerably higher sensitivity, approaching the one of conventional silver staining. The main modifications, as compared to Neuhoff's protocol, were: a 20% increment in dye concentration (from 0.1% up to 0.12%) and a much higher level of phosphoric acid in the recipe (from 2% up to 10%). The "blue silver" exhibits a much faster dye uptake (80% during the first hour of coloration, vs. none with a commercial preparation from Sigma). Even at equilibrium (24 h staining), the "blue silver" exhibits a much higher sensitivity than all other recipes, approaching (but lower than) the one of the classical silver stain. Measurements of stain sensitivity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of bovine serum albumin (BSA) gave a detection limit (signal-to-noise ratio > 3) of 1 ng in a single zone. The somewhat lower sensitivity of "blue silver" as compared to classical silvering protocols in the presence of aldehydes is amply compensated for by its full compatibility with mass spectrometry of eluted polypeptide chains, after a two-dimensional map analysis, thus confirming that no dye is covalently bound (or permanently modifies) to any residue in the proteinaceous material. It is believed that the higher level of phosphoric acid in the recipe, thus its lower final pH, helps in protonating the last dissociated residues of Asp and Glu in the polypeptide coils, thus greatly favoring ionic anchoring of dye molecules to the protein moiety. Such a binding, though, must be followed by considerable hydrophobic association with the aromatic and hydrophobic residues along the polypeptide backbone.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200305844DOI Listing

Publication Analysis

Top Keywords

"blue silver"
16
colloidal coomassie
8
higher sensitivity
8
higher level
8
level phosphoric
8
phosphoric acid
8
acid recipe
8
silver" exhibits
8
blue silver
4
silver sensitive
4

Similar Publications

Methylene blue@silver nanoprisms conjugates as a strategy against Candida albicans isolated from balanoposthitis using photodynamic inactivation.

Photodiagnosis Photodyn Ther

April 2024

Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil. Electronic address:

Article Synopsis
  • * The study explores photodynamic inactivation (PDI) as an alternative treatment, specifically using methylene blue (MB) in conjunction with silver nanoplatelets (AgNPrs) to enhance effectiveness against resistant strains.
  • * Results indicate that higher concentrations of MB significantly improve microbial inactivation when combined with AgNPrs and exposed to LED light, suggesting a novel treatment strategy for managing this condition.
View Article and Find Full Text PDF

The rapid increase in population growth under changing climatic conditions causes drought stress, threatening world food security. The identification of physiological and biochemical traits acting as yield-limiting factors in diverse germplasm is pre-requisite for genetic improvement under water-deficit conditions. The major aim of the present study was the identification of drought-tolerant wheat cultivars with a novel source of drought tolerance from local wheat germplasm.

View Article and Find Full Text PDF

Rapid screening of multiple pathogens will greatly improve the efficiency of pandemic prevention and control. Colorimetric methods exhibit the advantages of convenience, portability, low cost, time efficiency, and free of sophisticated instruments, yet usually have difficulties in simultaneous detection and suffer from monotonous color changes with low visual resolution and sensitivity. Hence, coupled three kinds of plasmonic nanoparticles (NPs) with magnetic separation, we developed an achromatic colorimetric nanosensor with highly enhanced visual resolution for simultaneous detection of SARS-CoV-2, Staphylococcus aureus, and Salmonella typhimurium.

View Article and Find Full Text PDF

Interaction of curcumin with a winter flounder alpha-helical antifreeze protein.

Biochem Biophys Res Commun

November 2022

Department of Biochemistry & Molecular Biology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada; Department of Biology, Dalhousie University, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada. Electronic address:

The winter flounder, Pseudopleuronectes americanus, synthesizes a variety of alpha-helical antifreeze proteins (AFPs) that adhere to ice and inhibit its growth. The best studied of these is AFP6, which is a 37-residue protein abundant in the flounder blood plasma during winter. Curcumin from the turmeric plant (Curcuma longa) was found to interact with AFP6 in aqueous solutions, resulting in measurable changes in the curcumin, but not in the protein.

View Article and Find Full Text PDF

The advent of global industrialization advancements has proven to be both a blessing and a curse for humanity, with significant detrimental consequences on marine bodies, and methylene blue is one of the common offenders through textile industry runoffs. These dye runoffs are complex, neurotoxic, and carcinogenic and prevent sunlight from penetrating the water to hinder photosynthesis and increase the biological/biochemical oxygen demand (BOD), hence hampering the ontogenesis of photoautotrophic organisms and thus threatening marine life and causing an increase in unavailability and inaccessibility to healthy water for eco-fundamental networking. Traditional methods came into the limelight, but they are costly and inefficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!