Presynaptic acetylcholine (ACh) synthesis and release is thought to be sustained by a hemicholinium-3-sensitive choline transporter (CHT). We disrupted the murine CHT gene and examined CHT-/- and +/- animals for evidence of impaired cholinergic neurotransmission. Although morphologically normal at birth, CHT-/- mice become immobile, breathe irregularly, appear cyanotic, and die within an hour. Hemicholinium-3-sensitive choline uptake and subsequent ACh synthesis are specifically lost in CHT-/- mouse brains. Moreover, we observe a time-dependent loss of spontaneous and evoked responses at CHT-/- neuromuscular junctions. Consistent with deficits in synaptic ACh availability, we also observe developmental alterations in neuromuscular junction morphology reminiscent of changes in mutants lacking ACh synthesis. Adult CHT+/- mice overcome reductions in CHT protein levels and sustain choline uptake activity at wild-type levels through posttranslational mechanisms. Our results demonstrate that CHT is an essential and regulated presynaptic component of cholinergic signaling and indicate that CHT warrants consideration as a candidate gene for disorders characterized by cholinergic hypofunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC423269PMC
http://dx.doi.org/10.1073/pnas.0401667101DOI Listing

Publication Analysis

Top Keywords

hemicholinium-3-sensitive choline
12
ach synthesis
12
cholinergic neurotransmission
8
choline transporter
8
choline uptake
8
cht
5
lethal impairment
4
cholinergic
4
impairment cholinergic
4
neurotransmission hemicholinium-3-sensitive
4

Similar Publications

The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells.

View Article and Find Full Text PDF

Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

J Neurochem

March 2014

Molecular Brain Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.

The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is a specialized synapse with a complex molecular architecture that provides for reliable transmission between the nerve terminal and muscle fiber. Using linkage analysis and whole-exome sequencing of DNA samples from subjects with distal hereditary motor neuropathy type VII, we identified a mutation in SLC5A7, which encodes the presynaptic choline transporter (CHT), a critical determinant of synaptic acetylcholine synthesis and release at the NMJ. This dominantly segregating SLC5A7 mutation truncates the encoded product just beyond the final transmembrane domain, eliminating cytosolic-C-terminus sequences known to regulate surface transporter trafficking.

View Article and Find Full Text PDF

A subset of patients with Parkinson's disease acquires a debilitating dementia characterized by severe cognitive impairments (i.e. Parkinson's disease dementia; PDD).

View Article and Find Full Text PDF

Organophosphorus poisoning manifests as a cholinergic syndrome due to an inhibition of acetylcholinesterase. It is treated symptomatically by anticholinergics and oxime reactivators are used as causal antidotes. Reactivators possess a complex mechanism of action and interact at various levels of the cholinergic transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!