Purpose: Apoptosis-related proteins are important molecules for predicting chemotherapy response and prognosis in adult acute myeloid leukemia (AML). However, data on the expression and prognostic impact of these molecules in childhood AML are rare.

Experimental Design: Using flow cytometry and Western blot analysis, we, therefore, investigated 45 leukemic cell samples from children with de novo AML enrolled and treated within the German AML-BFM93 study for the expression of apoptosis-regulating proteins [CD95, Bcl-2, Bax, Bcl-xL, procaspase-3, X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein-1 (cIAP-1), survivin].

Results: XIAP (P < 0.002) but no other apoptosis regulators showed maturation-dependent expression differences as determined by French-American-British (FAB) morphology with the highest expression levels observed within the immature M0/1 subtypes. XIAP (P < 0.01) and Bcl-xL (P < 0.01) expression was lower in patients with favorable rather than intermediate/poor cytogenetics. After a mean follow-up of 34 months, a shorter overall survival was associated with high expression levels of XIAP [30 (n = 10) versus 41 months (n = 34); P < 0.05] and survivin [27 (n = 10) versus 41 months (n = 34); P < 0.05].

Conclusions: We conclude that apoptosis-related molecules are associated with maturation stage, cytogenetic risk groups, and therapy outcome in childhood de novo AML. The observed association of XIAP with immature FAB types, intermediate/poor cytogenetics, and poor overall survival should be confirmed within prospective pediatric AML trials.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-03-0642DOI Listing

Publication Analysis

Top Keywords

expression levels
12
inhibitor apoptosis
12
high expression
8
x-linked inhibitor
8
apoptosis protein
8
poor survival
8
childhood novo
8
acute myeloid
8
myeloid leukemia
8
novo aml
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!