Air samples (vapor- and particle-phase) were taken for 19 sampling events during the period from December 1997 to July 1998 in an urban site in the center of Athens. The urban site is densely populated and characterized by heavy traffic circulation and elevated concentrations of VOCs, NO(x), CO and smoke. Seven volatile polycyclic aromatic hydrocarbons (PAHs) were determined in samples. The temperature dependence of gas-phase atmospheric concentration of PAHs, C(g), was investigated using diagrams of natural logarithm of partial pressures (lnP) vs. reciprocal mid-point temperatures. For the six of seven volatile PAHs, the temperature dependence of lnP was statistically significant (at least at the 90% confidence level) and the temperature accounted for 21-67% of the variability in gas-phase concentrations. The gas-phase concentration C(g) of the very volatile PAHs was affected more significantly by changes in temperature, but the variation of the less-volatile PAHs fluoranthene and pyrene C(g), was better explained by changes in temperature. The temperature dependence of gas/particle partitioning constant K(P) was also examined. Regressions of log(K(P))(-1) vs. T(-1) for fluorene, fluoranthene and pyrene were classified into two different temperature ranges. The gas/particle partitioning of PAHs was studied by correlating the partition constant to the sub-cooled liquid saturation vapor pressure (P(L)(o)). The Junge adsorption model underestimated the particle fraction of volatile PAHs probably due to the presence of non-exchangeable fraction. Slopes (m(r)) of the regressions logK(P) vs. logP(L)(o) were different from the value -1 as Pankow's theory predicts. The short distance between the sampling point and the emission sources is also estimated to be a factor that causes deviations from the theoretical value. Evidence that atmospheric conditions favorable for secondary aerosol formation coincide with higher value of m(r), was provided by limited sampling events. An interrelation was found to exist between the m(r) values, allowing the prediction of the gas/particle partitioning of a series of seven PAHs by the measurement of a single PAH partitioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2003.08.022 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
Mercury (Hg) is a neurotoxic pollutant that is ubiquitous on the planet and receives global concern because of its adverse health effects. Particle-bound Hg formation in the atmosphere stems mainly from the adsorption of reactive gaseous Hg on aerosol particles, particularly sea salt aerosol. However, the observed comparable abundance of Hg over Hg in the marine atmosphere has not been reproduced by traditional statistics-based schemes, which were constructed by continental observations.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany. Electronic address:
Particle-bound mercury (PBM) concentrations in particulate matter (PM), PM10 and PM2.5, were investigated during dust and non-dust events at urban and rural sites in Cabo Verde, Africa. During dust events, PBM averaged 35.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
Marine College, Shandong University, Weihai 264209, China.
Gas/particle (G/P) partitioning is a core process governing the atmospheric transport of organophosphate flame retardants (OPFRs). However, accurately predicting the G/P partition performance of OPFRs remains a challenge. In this study, four independent models were employed to estimate the characteristics of OPFR G/P partitioning within the octanol-air partition coefficient range of 4.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Environment Research Institute, Shandong University, Qingdao, 266237, China.
The consumption of organophosphorus flame retardants (OPFRs) has surged significantly recent years since global banning of brominated flame retardants (BFRs). Industrial activity is an important source of OPFRs, however there are few studies on OPFRs contamination in the indoor and outdoor atmosphere of industrial areas. A study was conducted to analyze contamination of 15 OPFRs individuals in both indoor and outdoor air and PM of living and industrial sites of the petrochemical industrial area (outdoor and indoor sites of living area was LO and LI, outdoor and indoor sites of industrial area was IO and II).
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen University, Shenzhen 518060, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!