In the present study, the gene expression of three multidrug resistance (MDR) and resistance-associated protein (MRP) transport proteins or efflux pumps was characterized and the phenotypic evidence for such pumps was demonstrated in cultured Madin-Darby canine kidney (MDCK) cells. A gradient for the fluorescent probe calcein was established between parasite and host cell suggestive of a parasite extrusion pump at the parasite-host interface. This gradient was decreased in a glucose-free medium containing 2-deoxyglucose or 3-O-methylglucose, by probenecid, and by the isoflavonoid, narigenin, suggesting that the calcein extrusion was energy-dependent and involved an MRP-like pump. While neither MDR or MRP inhibiters significantly affected transcript levels of any of the ABC transporters, transcript levels of the Cryptosporidium parvum ABC protein (CpABC1), an MRP transporter, were consistently expressed 4 logs higher than either CpABC3 or CpABC2, suggesting a prominent role in the intracellular stages of the parasite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2004.03.012 | DOI Listing |
AMB Express
January 2025
Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.
Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C.
View Article and Find Full Text PDFActa Parasitol
January 2025
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
Background: Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important zoonotic pathogens. In Inner Mongolia, a single pathogen molecular epidemiological survey of these three protozoa was previously conducted on only 176 fecal samples donkeys.
View Article and Find Full Text PDFJ Struct Biol
January 2025
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China. Electronic address:
Cryptosporidium has gained much attention as a major cause of diarrhea worldwide. Here, we present the first structure of H-2K complexed with a decapeptide from Cryptosporidium parvum Gp40/15 protein (Gp40/15-VTF10). In contrast to all published structures, the aromatic residue P3-Phe of Gp40/15-VTF10 is anchored in pocket C rather than the canonical Y/F at P5 or P6 reported for octapeptides and nonapeptides.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
bioRxiv
January 2025
Center for Drug Design, University of Minnesota, Minnesota, USA 55455.
is a common, waterborne gastrointestinal parasite that causes diarrheal disease worldwide. Currently there are no effective therapeutics to treat cryptosporidiosis in at-risk populations. Since natural products are a known source of anti-parasitic compounds, we screened a library of extracts and pure natural product compounds isolated from bacteria and fungi collected from subterranean environments for activity against .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!