Background: Angiogenic therapy for ischemic tissues using angiogenic growth factors has been reported on an experimental and a clinical level. Electroporation enhances the efficiency of plasmid-based gene transfer in a variety of tissues. The purpose of this study was to evaluate the angiogenic effects of plasmid-based gene transfer using basic fibroblast growth factor (bFGF) in combination with electroporation.

Materials And Methods: The transfection efficiency of in vivo electroporation in rabbit skeletal muscles was evaluated using pCAccluc+ encoding luciferase. To evaluate the angiogenic effects of bFGF gene in ischemic limb, we constructed a plasmid, pCAcchbFGFcs23, containing human bFGF cDNA fused with the secretory signal sequence of interleukin (IL)-2. Then, 500 microg of pCAcchbFGFcs23 or pCAZ3 (control plasmid) was injected into the ischemic thigh muscles in a rabbit model of hind limb ischemia with in vivo electroporation (bFGF-E(+) group and LacZ-E(+) group). Other sets of animals were injected with pCAcchbFGFcs23 (bFGF-E(-) group) or pCAZ3 (LacZ-E(-) group) without electroporation. Then 28 days later, calf blood pressure ratio, angiographic score, in vivo blood flow, and capillary density in the ischemic limb were measured.

Results: Gene transfer efficiency increased markedly with the increase in voltage up to 100 V. Regarding angiogenic responses, calf blood pressure ratio, in vivo blood flow, and capillary density only in the bFGF-E(+) group were significantly higher than those in LacZ-E(-) group. Angiographic scores in the bFGF-E(+) and bFGF-E(-) groups were significantly higher than that in the LacZ-E(-) group.

Conclusion: These data suggest that in vivo electroporation enhances bFGF gene transfer for the treatment of ischemic limb muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2003.12.016DOI Listing

Publication Analysis

Top Keywords

gene transfer
20
vivo electroporation
16
ischemic limb
16
electroporation enhances
12
plasmid-based gene
12
transfer basic
8
basic fibroblast
8
fibroblast growth
8
growth factor
8
treatment ischemic
8

Similar Publications

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Emergence of a novel group B streptococcus CC61 clade associated with human infections in southern China.

J Infect

January 2025

National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, PR China. Electronic address:

Objectives: Emerging human pathogens of animal origin have become an increasing public health concern in recent years. The aim of this study was to investigate the transmission of group B streptococcus (GBS) clonal complex (CC) 61 strains in the southern Chinese population and analyze their genetic characteristics.

Methods: Whole-genome sequencing was performed on 693 clinical isolates of GBS collected from southern China between 2016 and 2021, and the prevalence of human CC61 isolates was investigated by genomic epidemiology.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!