The cartilaginous skeleton of an elasmobranch fish does not heal.

Matrix Biol

Department of Anatomy, St. George's Hospital Medical School, Tooting, London SW17 0RE, UK.

Published: April 2004

The inability of articular cartilage to heal satisfactorily is becoming, with ageing populations, an important medical problem. One question that has not been raised is whether a mechanism for the repair of cartilage evolved in animals with cartilaginous skeletons. Fin rays of dogfish were cut and the fish maintained for up to 6 months. The initial inflammatory reaction around the cut rays lasts for 2 weeks. By 4 weeks the cut ends are covered by fibrous tissue. At 12 weeks some areas of cartilage-like tissue are developing. Development of these areas continues and at 26 weeks large chondrocyte-like cells are surrounded by matrix. This tissue is in regions of poor vascularity. It does not have the typical appearance of hyaline cartilage, nor is it integrated with the cartilage of the fin rays. No changes in the cut surfaces of the fin rays are observed at any time. It is concluded that no mechanism has evolved in the elasmobranch fishes for the repair of their cartilaginous skeleton. This is discussed in relation to previous investigations of the reactions of cartilage to injury in embryonic, neonatal and adult tissues of higher vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2004.02.001DOI Listing

Publication Analysis

Top Keywords

fin rays
12
cartilaginous skeleton
8
cartilage
5
skeleton elasmobranch
4
elasmobranch fish
4
fish heal
4
heal inability
4
inability articular
4
articular cartilage
4
cartilage heal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!