Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We applied a noninvasive method to assess bone structural integrity. The method is based on the measurement of the dynamic characteristics of the bone (quality factor and modal damping factor) by applying vibration excitation in the range of acoustic frequencies, in the form of an acoustic sweep signal. Excised sheep femora were tested to detect changes in modal damping, density (kg/m3), bone mineral density (kg/m2) and bone mineral (hydroxyapatite) percentage. The changes were recorded after each time of chemical treatment of the bones performed to gradually cause mineral removal, thus simulating osteoporosis. It was shown that the change in quality factor and damping was in all cases on average equal or greater to the change in all other measured characteristics, thus strengthening the potential of the proposed method to become a valuable assessment tool for monitoring bone integrity and osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.1644561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!