The present study examined the effects of prenatal cocaine (PCOC) exposure, age, sex, and estrous phase on the functional development of nigrostriatal dopamine (DA) neurons. Striatal tissue was obtained from prepubescent and adult rats of both sexes after bidaily exposure to saline (1 ml/kg) or cocaine (20 mg/kg/ml saline) from embryonic days 15-21. Tissue levels, basal release, and electrically evoked (1 or 8 Hz) overflow of endogenous DA and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as their efflux in response to superfusion with the DA transport blocker, nomifensine (10 microM), were measured from superfused striatal slices. Generally, these measures were highest in tissue from males and adults. Tissue DA and DOPAC levels and the rate of DA turnover were unaffected by PCOC exposure. Slices from PCOC-exposed juvenile and adult male rats exhibited significantly reduced basal and electrically evoked DA release at both stimulation intensities, in conjunction with higher levels of presynaptic DA reuptake. Female rats were largely spared from the effects of PCOC exposure, and measures did not vary with estrous phase. These findings demonstrate that the effects of PCOC exposure on various parameters of nigrostriatal DA neuronal function are not uniform across age, sex, or phases of the estrous cycle. These novel alterations in nigrostriatal DA transmission are in need of independent replication, but they may have profound implications for behavioral activities regulated by these neurons and, thus, may provide a basis for sex-selective effects of PCOC in exposed humans. Possible mechanisms of deleterious effects of PCOC exposure in select groups are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20036DOI Listing

Publication Analysis

Top Keywords

pcoc exposure
20
effects pcoc
16
age sex
12
prenatal cocaine
8
nigrostriatal dopamine
8
estrous phase
8
electrically evoked
8
exposure
7
effects
6
pcoc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!