A rapid and sensitive method for the simultaneous confirmatory analysis of three forensic most relevant cannabinoids, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH), by means of high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) in human plasma was developed and fully validated. Sample clean-up was performed by automated silica-based solid-phase extraction and the separation was carried out using a PhenylHexyl column (50 x 2 mm i.d., 3 micro m) and acetonitrile-5 mM ammonium acetate gradient elution. Data were acquired with an API 3000 LC/MS/MS system equipped with a turboionspray interface and triple quadrupole mass analyzer using positive electrospray ionization and multiple reaction monitoring. Two MS/MS transitions for each substance were monitored and deuterated analogues of analytes were used as internal standards for quantitation. The limit of quantitation was 0.8 ng ml(-1) for THC, 0.8 ng ml(-1) for 11-OH-THC and 4.3 ng ml(-1) for THC-COOH and linearity with a correlation coefficient r(2) = 0.999 was achieved up to 100 ng ml(-1) for THC and 11-OH-THC and 500 ng ml(-1) for THC-COOH. The limits of detection were 0.2 ng ml(-1) for THC, 0.2 ng ml(-1) for 11-OH-THC and 1.6 ng ml(-1) for THC-COOH. The developed LC/MS/MS method was also successfully used for the determination of THC-COOH-glucuronide, the phase II metabolite of THC-COOH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.616 | DOI Listing |
J Sep Sci
January 2025
Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil.
Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
The effect of a polybenzimidazolium anion exchange polymer on improving sensitivity and selectivity toward the electrochemical detection of Δ-tetrahydrocannabinol (Δ-THC) has been investigated. Herein we report a rapid, inexpensive and stable approach to detecting 10-1000 ng mL of Δ-THC in buffered solutions and in human saliva.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Atherosclerotic disease is the leading cause of death world-wide. Our goal was to explore the effect of phytocannabinoids on the molecular mechanisms triggering the development of the atheromatous lesion. Three cannabis sativa extracts of different chemotypes were chemically characterized by UPLC-DAD.
View Article and Find Full Text PDFAnal Chim Acta
November 2024
GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain. Electronic address:
Environ Sci Pollut Res Int
September 2024
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC) of CuSO (120 μg mL) or spinosad (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!