C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gene.20031DOI Listing

Publication Analysis

Top Keywords

mouse embryonic
8
defined serum-free
8
serum-free media
8
cell lines
8
improved generation
4
generation c57bl/6j
4
mouse
4
c57bl/6j mouse
4
embryonic stem
4
stem cells
4

Similar Publications

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Abnormal chromosome segregation (ACS) in preimplantation embryos causes miscarriages. For a normal pregnancy, it is necessary to reduce ACS occurrences in embryos. However, the causes of such abnormalities are unclear because no method to extract the segregated chromosomes from the blastomeres for detailed analysis.

View Article and Find Full Text PDF

BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China. Electronic address:

The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation.

View Article and Find Full Text PDF

Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo.

PLoS Genet

January 2025

Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.

The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.

View Article and Find Full Text PDF

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!