Abnormal neuronal aggregates of alpha-internexin and the three neurofilament (NF) subunits, NF-L, NF-M, and NF-H have recently been identified as the pathological hallmarks of neuronal intermediate filament (IF) inclusion disease (NIFID), a novel neurological disease of early onset with a variable clinical phenotype including frontotemporal dementia, pyramidal and extrapyramidal signs. alpha-Internexin, a class IV IF protein, a major component of inclusions in NIFID, has not previously been identified as a component of the pathological protein aggregates of any other neurodegenerative disease. Therefore, to determine the specificity of this protein, alpha-internexin immunohistochemistry was undertaken on cases of NIFID, non-tau frontotemporal dementias, motor neuron disease, alpha-synucleinopathies, tauopathies, and normal aged control brains. Our results indicate that class IV IF proteins are present within the pleomorphic inclusions of all cases of NIFID. Small subsets of abnormal neuronal inclusions in Alzheimer's disease, Lewy body diseases, and motor neuron disease also contain epitopes of alpha-internexin. Thus, alpha-internexin is a major component of the neuronal inclusions in NIFID and a relatively minor component of inclusions in other neurodegenerative diseases. The discovery of alpha-internexin in neuronal cytoplasmic inclusions implicates novel mechanisms of pathogenesis in NIFID and other neurological diseases with pathological filamentous neuronal inclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516855 | PMC |
http://dx.doi.org/10.1007/s00401-004-0882-7 | DOI Listing |
1The brains of Parkinson's disease (PD) patients are characterized by the presence of Lewy body inclusions enriched with fibrillar forms of the presynaptic protein alpha-synuclein (aSyn). Despite related evidence that Lewy pathology spreads across different brain regions as the disease progresses, the underlying mechanism hence the fundamental cause of PD progression is unknown. The propagation of aSyn pathology is thought to potentially occur through the release of aSyn aggregates from diseased neurons, their uptake by neighboring healthy neurons via endocytosis, and subsequent seeding of native aSyn aggregation in the cytosol.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
Systematic reviews (SR) synthesize evidence-based medical literature, but they involve labor-intensive manual article screening. Large language models (LLMs) can select relevant literature, but their quality and efficacy are still being determined compared to humans. We evaluated the overlap between title- and abstract-based selected articles of 18 different LLMs and human-selected articles for three SR.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFGenes Dis
March 2025
Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions containing aggregated α-synuclein (α-Syn). While the pathology of PD is multifaceted, the aggregation of α-Syn and mitochondrial dysfunction are well-established hallmarks in its pathogenesis. Recently, TFE3, a transcription factor, has emerged as a regulator of autophagy and metabolic processes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. Electronic address:
α-Synuclein (Syn) is an intrinsically disordered protein, abundant in presynaptic neurons. It is a constituent of the Lewis Body inclusions as amyloid fibrils, in Parkinson's disease patients. It populates an ensemble of conformations and floats between the free random coil and the membrane-bound α-helical species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!