The 2 microm circle is a highly persistent "selfish" DNA element resident in the Saccharomyces cerevisiae nucleus whose stability approaches that of the chromosomes. The plasmid partitioning system, consisting of two plasmid-encoded proteins, Rep1p and Rep2p, and a cis-acting locus, STB, apparently feeds into the chromosome segregation pathway. The Rep proteins assist the recruitment of the yeast cohesin complex to STB during the S phase, presumably to apportion the replicated plasmid molecules equally to daughter cells. The DNA-protein and protein-protein interactions of the partitioning system, as well as the chromatin organization at STB, are important for cohesin recruitment. Rep1p variants that are incompetent in binding to Rep2p, STB, or both fail to assist the assembly of the cohesin complex at STB and are nonfunctional in plasmid maintenance. Preventing the cohesin-STB association without impeding Rep1p-Rep2p-STB interactions also causes plasmid missegregation. During the yeast cell cycle, the Rep1p and Rep2p proteins are expelled from STB during a short interval between the late G(1) and early S phases. This dissociation and reassociation event ensures that cohesin loading at STB is replication dependent and is coordinated with chromosomal cohesin recruitment. In an rsc2 Delta yeast strain lacking a specific chromatin remodeling complex and exhibiting a high degree of plasmid loss, neither Rep1p nor the cohesin complex can be recruited to STB. The phenotypes of the Rep1p mutations and of the rsc2 Delta mutant are consistent with the role of cohesin in plasmid partitioning being analogous to that in chromosome partitioning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419871 | PMC |
http://dx.doi.org/10.1128/MCB.24.12.5290-5303.2004 | DOI Listing |
EMBO J
January 2025
Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
J Clin Invest
November 2024
Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Children's Hospital, and.
bioRxiv
November 2024
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.
Cells coordinate diverse events at anaphase onset, including separase activation, cohesin cleavage, chromosome separation, and spindle reorganization. Regulation of the XMAP215 family member and microtubule polymerase, Stu2, at the metaphase-anaphase transition determines a specific redistribution from kinetochores to spindle microtubules. We show that cells modulate Stu2 kinetochore-microtubule localization by Polo-like kinase1/Cdc5-mediated phosphorylation of T866, near the Stu2 C-terminus, thereby promoting dissociation from the kinetochore Ndc80 complex.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA.
iScience
September 2024
Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str, 1113 Sofia, Bulgaria.
During DNA repair, ATM-induced H2AX histone phosphorylation and MDC1 recruitment spread megabases beyond the damage site. While loop extrusion has been suggested to drive this spread, the underlying mechanism remains unclear. Herein, we provide two lines of evidence that loop extrusion is not the only driver of damage-induced γH2AX spread.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!