The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37 degrees C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419856PMC
http://dx.doi.org/10.1128/MCB.24.12.5130-5143.2004DOI Listing

Publication Analysis

Top Keywords

homologous recombination
12
saccharomyces cerevisiae
8
recombination
7
srs2
6
mutant
5
cerevisiae strain
4
strain mutant
4
mutant smt3-deconjugating
4
ulp1
4
smt3-deconjugating ulp1
4

Similar Publications

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Purpose: RING Finger 187 (RNF187) has recently emerged as a potential contributor to tumorigenesis. However, a comprehensive pan-cancer analysis of RNF187 in human tumors has not been undertaken until now.

Methods: Our study aims to investigate RNF187 expression across 33 different types of human tumors, utilizing data from the TCGA and GTEx databases.

View Article and Find Full Text PDF

Alternative Lengthening of Telomeres (ALT) is a homologous recombination-dependent telomere elongation mechanism utilized by at least 10-15% of all cancers. Here we identified that the DNA topoisomerase, TOP3A is enriched at the telomeres of ALT cells but not at the telomeres of telomerase-positive (Tel) cancer cells. We demonstrate that TOP3A stabilizes the shelterin protein TERF2 in ALT cancer cell lines but not in Tel cells and that long non-coding telomere transcribed RNA (TERRA) enrichment at telomeres depends upon TOP3A.

View Article and Find Full Text PDF

Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair.

Heliyon

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.

The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!