N-methyl-D-aspartate receptor blockade inhibits cardiac inflammation in the Mg2+-deficient rat.

J Pharmacol Exp Ther

Division of Experimental Medicine, Department of Biochemistry and Molecular Biology, George Washington University Medical Center, 2300 I St., NW, Washington, DC 20037, USA.

Published: October 2004

Elevated plasma levels of the neuropeptide substance P (SP) precede the perivascular inflammatory infiltrate seen in hearts of Mg(2+)-deficient (MgD) animals. The N-methyl-d-aspartate (NMDA) receptor is found in neurons, and activation of this receptor participates in SP release; under normal circumstances, this release can be blocked by Mg(2+). Therefore, we reasoned that blockade of the NMDA receptor with dizolcipine maleate (a noncompetitive NMDA receptor antagonist) would prevent SP release from C-fibers due to MgD. In this study, animals were implanted with slow-release pellets containing dizolcipine or placebo and were fed with diet sufficient in Mg(2+) or deficient with only 9% of USDA-recommended Mg(2+). SP immunostaining of dorsal root ganglia showed a time-dependent depletion of SP in the MgD animals, with a dramatic decrease of SP by week 2; this depletion was prevented by pretreatment with dizolcipine maleate. The significant increase in plasma prostaglandin E(2) levels during MgD was prevented by dizolcipine, and the loss of total red blood cell glutathione content was significantly attenuated by NMDA blockade after 3 weeks of MgD (p < 0.01 versus controls). Immunohistochemical and Western blot analyses of ventricular tissue demonstrated that NMDA receptor blockade abolished MgD-related increase of endothelium adhesion molecule CD54 (weeks 1 and 2; p < 0.05), and of monocyte/macrophage surface protein CD11b expression (week 3; p < 0.05). We conclude that NMDA receptor blockade with dizolcipine maleate prevented SP depletion and reduced perivascular inflammatory infiltrates, thus decreasing cardiac injury due to Mg(2+) deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.104.070003DOI Listing

Publication Analysis

Top Keywords

nmda receptor
20
receptor blockade
12
dizolcipine maleate
12
perivascular inflammatory
8
mgd animals
8
nmda
6
receptor
6
blockade
5
mgd
5
dizolcipine
5

Similar Publications

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors.

J Biol Chem

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:

Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.

View Article and Find Full Text PDF

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Pharmacotherapy plays a crucial role in treating attention-deficit/ hyperactivity disorder (ADHD). However, current medications for ADHD have limitations and potential adverse effects. Glutamate, a neurotransmitter that directly and indirectly modulates dopamine neurotransmission, is considered a new therapeutic target for ADHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!