AI Article Synopsis

Article Abstract

her3 encodes a zebrafish bHLH protein of the Hairy-E(Spl) family. During embryogenesis, the gene is transcribed exclusively in the developing central nervous system, according to a fairly simple pattern that includes territories in the mesencephalon/rhombencephalon and the spinal cord. In all territories, the her3 transcription domain encompasses regions in which neurogenin 1 (neurog1) is not transcribed, suggesting regulatory interactions between the two genes. Indeed, injection of her3 mRNA leads to repression of neurog1 and to a reduction in the number of primary neurones, whereas her3 morpholino oligonucleotides cause ectopic expression of neurog1 in the rhombencephalon. Fusions of Her3 to the transactivation domain of VP16 and to the repression domain of Engrailed show that Her3 is indeed a transcriptional repressor. Dissection of the Her3 protein reveals two possible mechanisms for transcriptional repression: one mediated by the bHLH domain and the C-terminal WRPW tetrapeptide; and the other involving the N-terminal domain and the orange domain. Gel retardation assays suggest that the repression of neurog1 transcription occurs by binding of Her3 to specific DNA sequences in the neurog1 promoter. We have examined interrelationships of her3 with members of the Notch signalling pathway by the Gal4-UAS technique and mRNA injections. The results indicate that Her3 represses neurog1 and, probably as a consequence of the neurog1 repression, deltaA, deltaD and her4. Moreover, Her3 represses its own transcription as well. Surprisingly, and in sharp contrast to other members of the E(spl) gene family, transcription of her3 is repressed rather than activated by Notch signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.01167DOI Listing

Publication Analysis

Top Keywords

her3
13
notch signalling
12
hairy-espl family
8
repression neurog1
8
her3 represses
8
neurog1
7
domain
6
repression
5
her3 zebrafish
4
zebrafish member
4

Similar Publications

The success of targeted therapies in oncogene-driven cancer is limited by adaptive or acquired treatment resistance, leading to disease progression. A recent study reports that YAP-dependent HER3 activation constitutes a therapeutic vulnerability of adaptive resistance to RET-targeted therapies in RET-altered cancers, highlighting a promising strategy to improve RET-inhibitor tumor responses.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. In non-small cell lung cancer (NSCLC), ADCs are being investigated targeting human epidermal growth factor receptor 2 (), human epidermal growth factor receptor 3 (), trophoblast cell surface antigen 2 (), Mesenchymal-epithelial transition factor (), and carcinoembryonic antigen-related cell adhesion molecule 5 (). To date, Trastuzumab deruxtecan is the only ADC that has been approved by the FDA for the treatment of patients with NSCLC, but several ongoing studies, both using ADCs as monotherapy and combined with other therapies, are investigating the efficacy of new ADCs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of ERBB3 expression in HER2-positive breast cancer and its potential impact on treatment resistance.
  • Through various bioinformatics techniques and machine learning algorithms, the researchers identified three key genes—PBX1, IGHM, and CXCL13—that are linked to ERBB3 expression and can serve as prognostic markers.
  • Findings suggest that these genes may influence breast cancer cell behavior and prognosis, emphasizing their significance in understanding HER2-positive breast cancer treatment outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinomas (PDAC) are highly aggressive and lack effective treatments; this study examines potential new therapies using rat monoclonal antibodies (mAbs) targeting specific membrane proteins.
  • Key membrane proteins such as HER1-4, MET, S1PR1, LAT1, and CD44v are frequently expressed in PDAC, and targeting them with mAbs demonstrated growth inhibition in various cancer cell lines.
  • High levels of CD44v in PDAC correlate with poor patient prognosis, indicating that targeting CD44v and related proteins could provide new diagnostic and therapeutic avenues for treating this aggressive cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!