Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We used the time correlation of shadowgraph images to determine the angle Theta of the horizontal component of the plume velocity above (below) the center of the bottom (top) plate of a cylindrical Rayleigh-Bénard cell of aspect ratio Gamma identical with D/L=1 (D is the diameter and L approximately 87 mm is the height) in the Rayleigh-number range 7 x 10(7)=R=3 x 10(9) for a Prandtl number sigma=6. We expect that Theta gives the direction of the large-scale circulation. It oscillates time periodically. Near the top and bottom plates Theta(t) has the same frequency but is anticorrelated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.194502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!