Radiative recombination transitions into the ground state of cooled bare and hydrogenlike uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest He-like ions. For the two-electron contribution to the ionization potential of He-like uranium we obtain a value of 2248+/-9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z He-like ions, and the accuracy reaches already the size of the specific two-electron radiative QED corrections.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.203004DOI Listing

Publication Analysis

Top Keywords

two-electron contribution
8
he-like uranium
8
contribution ionization
8
ionization potential
8
he-like ions
8
electron-electron interaction
4
interaction strong
4
strong electromagnetic
4
electromagnetic fields
4
two-electron
4

Similar Publications

Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).

View Article and Find Full Text PDF

The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.

View Article and Find Full Text PDF

The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.

View Article and Find Full Text PDF
Article Synopsis
  • Dynamic nuclear polarization (DNP) and quantum technologies utilize the spin transfer in electron-nuclear quantum systems, but larger couplings like hyperfine interactions can hinder these processes.
  • The Schrieffer-Wolff transformation is applied to analyze a system of two electrons and two nuclei, focusing on polarization-transfer methods, including an energy-conserving electron-nuclear four-spin flip-flop.
  • The study connects magnetic resonance and quantum information, demonstrating a model where all nuclear spins can aid in hyperpolarization without being impeded by a spin diffusion barrier in DNP.
View Article and Find Full Text PDF

Developing multicharge and spin stabilization strategies is fundamental to enhancing the lifetime of functional organic materials, particularly for long-term energy storage in multiredox organic redox flow batteries. Current approaches are limited to the incorporation of electronic substituents to increase or decrease the overall electron density or bulky substituents to sterically shield reactive sites. With the aim to further expand the molecular toolbox for charge and spin stabilization, we introduce regioisomerism as a scaffold-diversifying design element that considers the collective and cumulative electronic and steric contributions from all of the substituents based on their relative regioisomeric arrangements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!