The novel vortex phase and nature of the double transition field are investigated by two-component Ginzburg-Landau theory in a situation where fourfold-twofold symmetric superconducting double transition occurs. The deformation from 60 degrees triangular vortex lattice and a possibility of the vortex sheet structure are discussed. In the presence of the gradient coupling, the transition changes to a crossover at finite field. These characters are important to identify the multiple superconducting phase in PrOs4Sb12.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.157001 | DOI Listing |
Bioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada.
A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction and reduction of the acetyl group using borohydride, which resulted into the corresponding amino-alcohols. The naphthalene-based amino-alcohols underwent double dehydrations and double intramolecular cyclization with oxo-acids leading to one-pot formation of a C-N bond, a C-O bond and an amide bond in tandem, to generate two additional rings completing the steroidal framework.
View Article and Find Full Text PDFMolecules
January 2025
School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China.
In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C-N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method operates in ethanol under transition-metal-free and oxidant-free conditions, offering a sustainable and efficient approach for the synthesis of 3,4-dihydroquinazolines with broad functional group tolerance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Hematology/Oncology, University of Virginia, Charlottesville, VA 22903, USA.
Androgen-indifferent prostate cancer (AIPC) is increasingly common and particularly lethal. Data describing these tumors are sparse, and AIPC remains a poorly understood malignancy. Utilizing the Oncology Research Information Exchange Network (ORIEN) database, we enriched for tumors with features of AIPC using previously described characteristics.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China.
This study analyzes the impact of slip-dependent zeta potential on the heat transfer characteristics of nanofluids in cylindrical microchannels with consideration of thermal radiation effects. An analytical model is developed, accounting for the coupling between surface potential and interfacial slip. The linearized Poisson-Boltzmann equation, along with the momentum and energy conservation equations, is solved analytically to obtain the electrical potential field, velocity field, temperature distribution, and Nusselt number for both slip-dependent (SD) and slip-independent (SI) zeta potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!