We have measured the cosmic ray spectrum above 10(17.2) eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.151101 | DOI Listing |
Viruses
November 2024
Department of Biochemistry and Molecular Biology, College of Medicine Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA.
are ssDNA plant viruses whose control has both economical and agricultural importance. Their capsids assemble into two distinct architectural forms: (i) a T = 1 icosahedral and (ii) a unique twinned quasi-isometric capsid. Described here are the high-resolution structures of both forms of the maize streak virus using cryo-EM.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
[...
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
We demonstrate high-resolution single-pixel imaging (SPI) in the visible and near-infrared wavelength ranges using an SPI framework that incorporates a novel, dedicated sampling scheme and a reconstruction algorithm optimized for the rapid imaging of highly sparse scenes at the native digital micromirror device (DMD) resolution of 1024 × 768. The reconstruction algorithm consists of two stages. In the first stage, the vector of SPI measurements is multiplied by the generalized inverse of the measurement matrix.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
In this study, we describe a low-noise complementary metal-oxide semiconductor (CMOS) image sensor (CIS) with a 10/11-bit hybrid single-slope analog-to-digital converter (SS-ADC). The proposed hybrid SS-ADC provides a resolution of 11 bits in low-light and 10 bits in high-light. To this end, in the low-light section, the digital-correlated double sampling method using a double data rate structure was used to obtain a noise performance similar to that of the 11-bit SS-ADC under low-light conditions, while maintaining linear in-out characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!