Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.162001 | DOI Listing |
Phys Rev Lett
November 2024
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany.
Many excited states in the hadron spectrum have large branching ratios to three-hadron final states. Understanding such particles from first principles QCD requires input from lattice QCD with one-, two-, and three-meson interpolators as well as a reliable three-body formalism relating finite-volume spectra at unphysical pion mass values to the scattering amplitudes at the physical point. In this work, we provide the first-ever calculation of the resonance parameters of the ω meson from lattice QCD, including an update of the formalism through matching to effective field theories.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
We report the first lattice QCD computation of pion and kaon electromagnetic form factors, F_{M}(Q^{2}), at large momentum transfer up to 10 and 28 GeV^{2}, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at Q^{2}≲4 GeV^{2}. For Q^{2}≳4 GeV^{2}, our results provide ab initio QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA.
Utilizing a comprehensive (3+1)D relativistic hydrodynamic framework with multiple conserved charge currents and charge-dependent lattice-QCD-based equation of state, we study the baryon and electric charge number deposition at midrapidity in isobar Ru+Ru and Zr+Zr collisions at the center of mass energy sqrt[s_{NN}]=200 GeV. Comparing our predictions with upcoming experimental data from the Relativistic Heavy Ion Collider will shed light on the existence of baryon junctions.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Department of Theoretical Physics, CERN, 1211 Geneva 23, Switzerland.
We present the first purely theoretical calculation of the weak mixing angle in the MS[over ¯] scheme at low energies by combining results from lattice QCD with perturbation theory. We discuss its correlation with the hadronic contribution to the anomalous magnetic moment of the muon and to the energy dependence of the electromagnetic coupling. We also compare the results with calculations using cross-section data as input.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
CSSM and ARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics, University of Adelaide, Adelaide 5005, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!