We show that, apart from a difference in scale, all of the surprising recently observed properties of a degenerate Fermi gas near a Feshbach resonance persist in the high temperature Boltzmann regime. In this regime, the Feshbach resonance is unshifted. By sweeping across the resonance, a thermal distribution of bound states (molecules) can be reversibly generated. Throughout this process, the interaction energy is negative and continuous. We also show that this behavior must persist at lower temperatures unless there is a phase transition as the temperature is lowered. We rigorously demonstrate universal behavior near the resonance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.160404 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
The cyano-cyclopentadiene molecule (CN-CH) has attracted significant interest since its detection in the interstellar medium, but the radical (CN-CH) and anionic (CN-CH) forms of cyano-cyclopentadiene have not been studied. The cyano-cyclopentadienyl radical (CN-Cp) has a strong dipole moment, rendering it an ideal system for vibrational and rotational spectroscopy. We report an investigation of the cryogenically cooled cyano-cyclopentadienide anion (CN-Cp) using high-resolution photoelectron imaging, photodetachment spectroscopy, and resonant photoelectron imaging.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.
J Phys Chem A
January 2025
Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Quantum Biology Laboratory, Howard University, 2400 6th St. NW, Washington, D.C., 20059, United States of America.
A century ago it was discovered that metabolic processes in living cells emit a spectrum of very low intensity radiation. This was based on observations that radiant energy from proliferating cells can amplify the rate of cell division in other nearby cellular life. Although metabolic radiation is now thoroughly documented in research on ultraweak photon emissions (UPE), the original finding that UPE can enhance mitogenesis remains controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!