Ordering phenomena in cooling granular mixtures.

Phys Rev Lett

Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.

Published: April 2004

We report two phenomena, induced by dynamical correlations, that occur during the free cooling of a two-dimensional mixture of inelastic hard disks. First, we show that, due to the onset of velocity correlations, the ratio of the kinetic energies associated with the two species changes from the value corresponding to the homogeneous cooling state to a value approximately given by the mass ratio m(1)/m(2) of the two species. Second, we report a novel segregation effect that occurs in the late stage of cooling, where interconnected domains appear. Spectral analysis of the composition field reveals the emergence of a growing characteristic length.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.174502DOI Listing

Publication Analysis

Top Keywords

ordering phenomena
4
cooling
4
phenomena cooling
4
cooling granular
4
granular mixtures
4
mixtures report
4
report phenomena
4
phenomena induced
4
induced dynamical
4
dynamical correlations
4

Similar Publications

A Molecular Perspective of Exciton Condensation from Particle-Hole Reduced Density Matrices.

J Phys Chem Lett

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order.

View Article and Find Full Text PDF

Optical accordion lattices are routinely used in quantum simulation and quantum computation experiments to tune optical lattice spacings. Here, we present a technique for creating tunable optical lattices using binary-phase transmission gratings. Lattices generated using this technique have high uniformity, contrast, lattice spacing tunability, and power efficiencies.

View Article and Find Full Text PDF

Transition metal phosphorus sulfides (MPS), a family of two-dimensional magnetic materials with a van der Waals structure, exhibit promising applications in nonlinear optical devices. The emergence of carrier coherence in MPS is a fascinating topic in coherently controlling the nonlinear effect (or other novel phenomena). Herein, we systematically investigated the third-order nonlinear optical responses of MPS (M = Ni, Fe, Mn) flake suspensions based on spatial self-phase modulation (SSPM) effect.

View Article and Find Full Text PDF

We study properties of a light field at the tight focus of the superposition of two different-order cylindrical vector beams (CVBs). In the source plane, this superposition has a polarization singularity index amounting to the half-sum of the numbers of two constituent CVBs, while having neither spin angular momentum (SAM) nor transverse energy flow. We show that if the constituent CVBs have different-parity numbers, in the focal plane there occur areas that have opposite-sign longitudinal SAM projections, alongside areas of opposite-handed energy flows rotating on closed paths (clockwise and anticlockwise).

View Article and Find Full Text PDF

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!