Measurements of the production of forward high-energy pi(0) mesons from transversely polarized proton collisions at sqrt[s]=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x(F) below about 0.3, and becomes positive and large at higher x(F), similar to the trend in data at sqrt[s]< or =20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p(T)>1 GeV/c at a polarized proton collider.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.171801DOI Listing

Publication Analysis

Top Keywords

proton collisions
8
collisions sqrt[s]=200
8
sqrt[s]=200 gev
8
polarized proton
8
perturbative qcd
8
analyzing power
8
cross sections
4
sections transverse
4
transverse single-spin
4
single-spin asymmetries
4

Similar Publications

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

Atmospheric Pressure Chemical Ionization Q-Orbitrap Mass Spectrometry Analysis of Gas-Phase High-Energy Dissociation Routes of Triarylamine Derivatives.

Molecules

December 2024

School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.

Triarylamine groups have been widely utilized in the development of high-performance charge-transporting or luminescent materials for fabricating organic light-emitting diodes (OLEDs). In this study, atmospheric pressure chemical ionization (APCI) Q-Orbitrap mass spectrometry was adopted to investigate the dissociation behaviors of these triarylamine derivatives. Specifically, taking [M+H] as the precursor ion, high-energy collision dissociation (HCD) experiments within the energy range from 0 to 80 eV were carried out.

View Article and Find Full Text PDF

A search is reported for charge-parity violation in decays, using data collected in proton-proton collisions at recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons.

View Article and Find Full Text PDF

[Treatment Couch Path Planning for Proton Therapy Systems].

Zhongguo Yi Liao Qi Xie Za Zhi

November 2024

Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022.

In the treatment process of proton radiation therapy, the patient needs to be positioned and immobilized before being moved into the treatment position. In this study, the patient was primarily positioned using the 6R robotic treatment couch as the patient support system (PSS). A simplified three-dimensional model of the treatment room was developed based on the relative motion within the treatment room.

View Article and Find Full Text PDF

Roundabout Mechanism of Ion-Molecule Nucleophilic Substitution Reactions.

ACS Phys Chem Au

November 2024

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Roundabout (RA) is an important indirect mechanism for gas-phase X + CHY → XCH + Y S2 reactions at a high collision energy. It refers to the rotation of the CH-group by half or multiple circles upon the collision of incoming nucleophiles before substitution takes place. The RA mechanism was first discovered in the Cl + CHI S2 reaction to explain the energy transfer observed in crossed molecular beam imaging experiments in 2008.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!