Effective potential of a charged dusty particle moving in homogeneous plasma has a negative part that provides attraction between similarly charged dusty particles. A depth of this potential well is great enough to ensure both stability of crystal structure of dusty plasma and sizable value of surface tension of a boundary surface of dusty region. The latter depends on the orientation of the surface relative to the ion flow, namely, it is maximal and positive for the surface normal to the flow and minimal and negative for the surface along the flow. For the most cases of dusty plasma in a gas discharge, a value of the first of them is more than sufficient to ensure stability of lenticular dusty phase void oriented across the counter-ion flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.69.046410 | DOI Listing |
Soft Matter
January 2025
Physics Department, Wesleyan University, Middletown, CT 06459, USA.
We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute of Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany.
In any physical system where a surface is hit by electrons, the sticking probability s of the electrons is a central parameter governing, for example, the charging of the surface. For dielectrics, it could previously only be measured for high energies (>100 eV), while it is well-known for metals even at energies of only a few eV. Recent theoretical investigations concerning dielectrics such as silica predict values for s significantly below 1.
View Article and Find Full Text PDFPhys Rev E
September 2024
Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia.
The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function.
View Article and Find Full Text PDFJ Mater Chem B
July 2024
Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/Devices, The University of Alabama at Birmingham (UAB), 1150 10th Ave S, Birmingham, AL 35233, USA.
Materiobiology is an emerging field focused on the physiochemical properties of biomaterials concerning biological outcomes which includes but is not limited to the biological responses and bioactivity of surface-modified biomaterials. Herein, we report a novel characterization platform for characterizing nanoparticle surface-modified 3D printed PLA scaffolds. We have introduced innovative design parameters that were practical for ubiquitous assays like those utilizing 96 and 24-well plates.
View Article and Find Full Text PDFPhys Rev E
March 2024
Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
Molecular dynamical simulations are performed to investigate the scaling of the transverse sound speed in two-dimensional (2D) and 3D Yukawa fluids. From the calculated diagnostics of the radial distribution function, the mean-squared displacement, and the Pearson correlation coefficient, the approximate isomorphic curves for 2D and 3D liquidlike Yukawa systems are obtained. It is found that the structure and dynamics of 2D and 3D liquidlike Yukawa systems exhibit the isomorphic property under the conditions of the same relative coupling parameter Γ/Γ_{m}=const.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!