Intra- and extracellular Abeta and PHF in clinically evaluated cases of Alzheimer's disease.

Histol Histopathol

Department of Neuroanatomy and Cell Biology, Instituto Cajal (CSIC), Madrid, Spain.

Published: July 2004

Temporal cortical sections from postmortem brains of individuals without any dementing condition and with different degrees of severity of Alzheimer's disease (AD) evaluated by the Clinical Dementia Rating scale (CDR 0-CDR 3) were analyzed using immunohistochemical procedures. To demonstrate the amyloid-beta-peptide (Abeta) deposition and the neurofibrillary pathology, two monoclonal antibodies were used, a human CERAD Abeta (10D5) antibody raised against the N-terminal region of the Abeta-peptide, and an antibody raised against paired helical filaments (PHF-1). The neuron cell bodies and the glial cells were also recognized by two polyclonal antibodies raised, respectively, against the protein gene peptide (PGP 9.5) and glial fibrillary acidic protein (GFAP). Directly related to severity of AD, progressive deposits of Abeta-peptide were found within cortical pyramidal-like neurons and forming senile plaques. Ultrastructurally, Abeta-peptide deposits were related to neuronal intracytoplasmic organelles, such as the ER, the mitochondria, the Nissl bodies and lipofuscin. We have also found that the intracellular deposition of the Abeta peptide is a neuropathological finding prior to the appearance of PHF-immunoreactive structures. We suggest that the intracellular Abeta deposition in cortical pyramidal neurons is a first neurodegenerative event in AD development and that it is involved in cell dysfunction, neuronal death, and plaque formation.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-19.823DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
abeta deposition
8
antibody raised
8
abeta
5
intra- extracellular
4
extracellular abeta
4
abeta phf
4
phf clinically
4
clinically evaluated
4
evaluated cases
4

Similar Publications

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

Depressive Symptoms and Amyloid Pathology.

JAMA Psychiatry

January 2025

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Importance: Depressive symptoms are associated with cognitive decline in older individuals. Uncertainty about underlying mechanisms hampers diagnostic and therapeutic efforts. This large-scale study aimed to elucidate the association between depressive symptoms and amyloid pathology.

View Article and Find Full Text PDF

Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.

View Article and Find Full Text PDF

Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.

View Article and Find Full Text PDF

The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!