A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pharmacological characterization of inositol 1,4,5-trisphosphate binding sites: relation to Ca2+ release. | LitMetric

Two subcellular fractions, one enriched in plasma membranes and the other in endoplasmic reticulum membranes, were obtained from WRK1 cells using a combination of differential centrifugations and Percoll gradient fractionation. Specific inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) binding sites were detected in these two preparations. Endoplasmic reticulum membranes exhibited a binding capacity which was about 5-fold higher than that of plasma membranes. Dose-dependent Ins(1,4,5)P3 binding was determined. Experimental data obtained with endoplasmic reticulum membranes could be adequately fitted with a two-site model (a high-affinity binding site with Kd and Bmax values of 0.7 +/- 0.15 nM and 12.9 +/- 5 fmol/mg protein and a low-affinity binding site with Kd and Bmax values of 44.2 +/- 14.6 nM and 143 +/- 43 fmol/mg protein). Both the high- and low-affinity binding sites were selective for Ins(1,4,5)P3. Besides Ins(1,4,5)P3, Ins(1,3,4,5)P4 also discriminated between the two populations of sites while heparin interacted with the high- and low-affinity binding sites with the same affinity. Ins(1,4,5)P3-induced calcium release from endoplasmic reticulum vesicles was determined by monitoring the calcium concentration in the extravesicular compartment with fura-2. Under experimental conditions where the degradation of Ins(1,4,5)P3 was reduced (incubation at 0 degrees C), a high-affinity Ins(1,4,5)P3-induced calcium release (apparent Kact around 20 nM) could be demonstrated. These results suggest that in WRK1 cells, the endoplasmic reticulum is a major site for Ins(1,4,5)P3 action and that the high-affinity binding sites located on the endoplasmic reticulum membranes may contribute to the physiological regulation of the cytosolic free calcium concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0922-4106(92)90019-rDOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
24
binding sites
20
reticulum membranes
16
low-affinity binding
12
binding
9
inositol 145-trisphosphate
8
plasma membranes
8
wrk1 cells
8
ins145p3 binding
8
high-affinity binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!