Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470839 | PMC |
http://dx.doi.org/10.1534/genetics.167.1.35 | DOI Listing |
Breast Cancer
December 2024
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
Background: In patients with breast cancer staged ypN1 after neoadjuvant chemotherapy (NAC), there is limited evidence-based guidance regarding exemption from axillary lymph node dissection (ALND).
Methods: This study analyzed ypN1 breast cancer patients post-NAC from the Surveillance, Epidemiology, and End Results databases. Patients were categorized into the breast-conserving surgery (BCS) group and the total mastectomy (TM) group, and further divided by the number of positive lymph nodes (LNs).
Virus Genes
December 2024
Federal Research Center of Fundamental and Translational Medicine, Timakova Str.2, Novosibirsk, 630117, Russia.
Researchers have identified Avastrovirus as a significant genus of bird viruses, linked to various avian diseases such as enteritis, growth retardation, nephritis and hepatitis. These infections can cause substantial economic losses in agrocultureand have a widespread impact on global food production. Although there have been numerous studies on these viruses, most of them-mainly focuses on poultry.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Horticultural Crops Disease and Pest Management Research Unit, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR, USA.
Pathogens have evolved effector proteins to suppress host immunity and facilitate plant infections. RxLR effectors are small, secreted effector proteins with conserved RxLR and dEER amino acid motifs at the N terminus and highly variable C termini and are commonly found in oomycete species. We provide computational approaches to annotate RxLR candidate effector genes in a genome assembly in FASTA format with an available GFF file.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Molecular genetic tools such as CRISPR-Cas gene editing systems are invaluable for understanding gene and protein function and revealing the details of a pathogen's life and disease cycles. Here we present protocols for genome editing in Phytophthora infestans, an oomycete with global importance as a pathogen of potato and tomato. Using a vector system that expresses variants of Cas12a from Lachnospiraceae bacterium and its guide RNA from a unified transcript, we first present a method for editing genes through the non-homologous end-joining (NHEJ) pathway.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK.
At the core of assays to understand the role(s) of specific genes is the ability to stably transfer genes into Phytophthora through transformation. A key method for achieving this has been based on polyethylene glycol (PEG)/CaCl transformation of protoplasts, but efficiency has often been low. Improving transformation efficiency is necessary for many applications, such as gene knockouts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!