DNA mismatch repair (MMR) proteins are integral to the maintenance of genomic stability and suppression of tumorigenesis due to their role in repair of post-replicative DNA errors. Recent data also support a role for MMR proteins in cellular responses to exogenous DNA damage that does not involve removal of DNA adducts. We have demonstrated previously that both Msh2- and Msh6-null primary mouse embryonic fibroblasts are significantly less sensitive to UVB (ultraviolet B)-induced cytotoxicity and apoptosis than wild-type control cells. In order to ascertain the physiological relevance of the data we have exposed MMR-deficient mice to acute and chronic UVB radiation. We found that MMR-deficiency was associated with reduced levels of apoptosis and increased residual UVB-induced DNA adducts in the epidermis 24-h following acute UVB exposure. Moreover, Msh2-null mice developed UVB-induced skin tumors at a lower level of cumulative UVB exposure and with a greater severity of onset than wild-type mice. The Msh2-null skin tumors did not display microsatellite instability, suggesting that these tumors develop via a different tumorigenic pathway than tumors that develop spontaneously. Therefore, we propose that dysfunctional MMR promotes UVB-induced tumorigenesis through reduced apoptotic elimination of damaged epidermal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgh191DOI Listing

Publication Analysis

Top Keywords

dna mismatch
8
mismatch repair
8
mmr proteins
8
dna adducts
8
uvb exposure
8
skin tumors
8
tumors develop
8
dna
6
uvb
5
repair proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!