In normal subjects, elevation of plasma free fatty acid (FFA) levels stimulates gluconeogenesis (GNG) and inhibits glycogenolysis (GLY). In adults with uncomplicated Plasmodium falciparum malaria, GNG is increased and GLY decreased. To test the hypothesis that FFAs are regulators of GNG and GLY in uncomplicated falciparum malaria, we investigated the effect of inhibition of lipolysis by acipimox in 12 patients with uncomplicated falciparum malaria. Six of them were given acipimox, and six served as controls. Also as controls, six matched healthy subjects were studied on two occasions with and without acipimox. After 16 h of fasting, glucose production and GNG were significantly higher in the malaria patients compared with the healthy controls (P = 0.003 and < 0.0001, respectively), whereas GLY was significantly lower (P < 0.001), together with elevated plasma concentrations of cortisol and glucagon. During the study, glucose production in patients declined over time (P < 0.0001), without a statistically significant difference between the acipimox-treated and untreated patients. In controls, however, with acipimox the decline was less outspoken compared with nontreated controls (P = 0.005). GNG was unchanged over time in patients as well as in healthy controls, and no influence of acipimox was found. In patients, GLY declined over time (P < 0.001), without a difference between acipimox-treated and untreated patients. In contrast, in controls treated with acipimox, no change over time was found, which was statistically different from the decline in untreated controls (P = 0.002). In conclusion, in falciparum malaria, FFAs are not involved in regulation of glucose production, nor of GNG or GLY.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00026.2004DOI Listing

Publication Analysis

Top Keywords

falciparum malaria
20
uncomplicated falciparum
12
glucose production
12
ffas involved
8
involved regulation
8
adults uncomplicated
8
gng gly
8
acipimox patients
8
controls
8
production gng
8

Similar Publications

Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans.

View Article and Find Full Text PDF

Malaria monoclonals block brain binding.

Trends Parasitol

January 2025

Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.

In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.

View Article and Find Full Text PDF

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

Very low prevalence of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene deletion in the Brazil, Venezuela, and Guyana tri-border.

Sci Rep

January 2025

Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.

Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).

View Article and Find Full Text PDF

The significance of multiplication rate variation in malaria parasites needs to be determined, particularly for Plasmodium falciparum, the species that causes most virulent infections. To investigate this, parasites from cases presenting to hospital in The Gambia and from local community infections were culture-established and then tested under exponential growth conditions in a standardised six-day multiplication rate assay. The multiplication rate distribution was lower than seen previously in clinical isolates from another area in West Africa where infection is more highly endemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!