Substrate capacity considerations in developing kinase assays.

Assay Drug Dev Technol

Department of Assay and Automation Technology, Genentech, Inc., South San Francisco, CA, USA.

Published: April 2004

In developing a screening assay for a serine/threonine kinase, we evaluated various formats of an in-plate enzyme-linked immunosorbent assay (ELISA), as well as solution-phase kinase assays using either ELISA or AlphaScreen detection. Substrate was available both as a biotinylated 15-residue peptide and as a 25-residue peptide containing the same sequence expressed as a glutathione S-transferase fusion protein. When increasing concentrations of either of these substrates were coated directly onto ELISA plates, the rates of the kinase reactions progressively increased. In contrast, when the biotin-peptide was captured onto NeutrAvidin-coated plates, the finite peptide binding capacity of the plates limited the amount of substrate that could be incorporated into the assay system and thereby limited the rate of the reaction at a given kinase concentration. Solution-phase kinase reactions can tolerate high substrate concentrations; however, analysis of kinase reaction samples containing biotin-peptide concentrations higher than the binding capacity of NeutrAvidin-coated plates resulted in an inability to detect differences between reactions run at different substrate concentrations. For AlphaScreen detection following solution-phase kinase reactions, limitations in the binding capacity of the donor and acceptor beads caused loss of signal for substrate concentrations above the maximum binding capacity. Overall, the solution-phase assays required significantly more kinase than the in-plate assays (1-4 microg/ml versus <100 ng/ml, respectively). These studies demonstrate that the amount of substrate that can be incorporated into an assay system substantially affects the rate of the kinase reaction and therefore the amount of kinase required for the assay.

Download full-text PDF

Source
http://dx.doi.org/10.1089/154065804323056477DOI Listing

Publication Analysis

Top Keywords

binding capacity
16
solution-phase kinase
12
kinase reactions
12
substrate concentrations
12
kinase
9
kinase assays
8
alphascreen detection
8
neutravidin-coated plates
8
substrate
6
concentrations
5

Similar Publications

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Effects of molecular weight of chitosan on its binding ability with OSA starch and oil-water interface behavior of complex-stabilized emulsion.

Int J Biol Macromol

December 2024

School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:

This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.

View Article and Find Full Text PDF

Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors.

J Biol Chem

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:

Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!