Background: Whether or not a protein's number of physical interactions with other proteins plays a role in determining its rate of evolution has been a contentious issue. A recent analysis suggested that the observed correlation between number of interactions and evolutionary rate may be due to experimental biases in high-throughput protein interaction data sets.
Discussion: The number of interactions per protein, as measured by some protein interaction data sets, shows no correlation with evolutionary rate. Other data sets, however, do reveal a relationship. Furthermore, even when experimental biases of these data sets are taken into account, a real correlation between number of interactions and evolutionary rate appears to exist.
Summary: A strong and significant correlation between a protein's number of interactions and evolutionary rate is apparent for interaction data from some studies. The extremely low agreement between different protein interaction data sets indicates that interaction data are still of low coverage and/or quality. These limitations may explain why some data sets reveal no correlation with evolutionary rates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC420460 | PMC |
http://dx.doi.org/10.1186/1471-2148-4-13 | DOI Listing |
Evolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
Department of Biology, University of Turku, Turku, Finland.
Understanding factors influencing community resilience to disturbance is critical for mitigating harm at various scales, including harm from medication to gut microbiota and harm from human activity to global biodiversity, yet there is a lack of data from large-scale controlled experiments. Factors expected to boost resilience include prior exposure to the same disturbance and dispersal from undisturbed patches. Here we set up an in vitro system to test the effect of disturbance pre-exposure and dispersal represented by community mixing.
View Article and Find Full Text PDFNat Commun
January 2025
Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.
Research Highlight: Edwards, O. M., Zhai, L.
View Article and Find Full Text PDFHorm Behav
January 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa; Center for the Interdisciplinary Study of Language Evolution, ISLE, University of Zurich, Switzerland.
Encoding of emotional arousal in vocalisations is commonly observed in the animal kingdom, and provides a rapid means of information transfer about an individual's affective responses to internal and external stimuli. As a result, assessing affective arousal-related variation in the acoustic structure of vocalisations can provide insight into how animals perceive both internal and external stimuli, and how this is, in turn, communicated to con- or heterospecifics. However, the underlying physiological mechanisms driving arousal-related acoustic variation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!