AI Article Synopsis

Article Abstract

A simple kinetic spectrophotometric method was developed for the determination of josamycin in its dosage forms and spiked human plasma. The method is based on reaction of the drug with 3-methylbenzothiazolin-2-one hydrazone/ferric chloride system for a fixed time of 20 min at 70 degrees C and measuring the produced color at 665 nm. The absorbance-concentration plot is rectilinear over the range of 5.0-30.0 microg/mL with detection limit of 1.0 microg/mL (1.2 x 10(-6) M). The determination of josamycin by the fixed concentration and the rate-constant methods is also feasible with the calibration equations obtained, but the fixed-time method proved to be more applicable. The procedure was successfully applied to commercial tablets. The results obtained were favorably compared with those given by reference methods. The method was further extended to the in vitro determination of josamycin in spiked human plasma. The recovery (n = 8) was 100.76 +/- 3.43%. The stoichiometry of the reaction between the drug and the reagent was studied by adopting the limiting logarithmic method, and a proposal of the reaction pathway was presented.

Download full-text PDF

Source

Publication Analysis

Top Keywords

determination josamycin
16
spiked human
12
human plasma
12
kinetic spectrophotometric
8
reaction drug
8
method
5
determination
4
spectrophotometric determination
4
josamycin
4
josamycin formulations
4

Similar Publications

Macrolides are a group of compounds used to treat bacterial infections in humans and animals. Their widespread use results in the contamination of the water environment, which, on the one hand, has a detrimental effect on aquatic organisms and, on the other hand, can lead to the emergence of resistant strains of microorganisms. All of the above determines the need for monitoring of these compounds in the environment, particularly, in water objects.

View Article and Find Full Text PDF

Some macrolide antibiotics, which share a basic lactone ring structure, also exhibit anti-inflammatory actions in addition to their antibacterial activities. However, no study has directly compared anti-inflammatory effects on acute inflammation among macrolide antibiotics with the distinct size of the lactone ring. In this study, we evaluated and compared the anti-inflammatory activities of four 14-membered macrolides (erythromycin, clarithromycin, roxithromycin, oleandomycin), one 15-membered macrolide (azithromycin), and three 16-membered macrolides (midecamycin, josamycin, leucomycin) using a rat carrageenan-induced footpad edema model.

View Article and Find Full Text PDF

To study antimicrobial susceptibilities of genital mycoplasmas recovered from endocervical samples of reproductive-age, nonpregnant women ( = 8,336). For isolation and susceptibility testing, the Mycoplasma IST2 kit was used. As many as 2093 samples were positive for mycoplasmas.

View Article and Find Full Text PDF

The amount of macrolide (MAL) residues in aquatic products, including oleandomycin (OLD), erythromycin (ERM), clarithromycin (CLA), azithromycin (AZI), kitasamycin (KIT), josamycin (JOS), spiramycin (SPI), tilmicosin (TIL), tylosin (TYL), and roxithromycin (ROX), was determined using solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The residues were extracted with 1% ammonia acetonitrile solution and purified by neutral alumina adsorption. Chromatographic separation was completed on an ACQUITY UPLC BEH C column with acetonitrile-0.

View Article and Find Full Text PDF

The prevalence of antibiotic-resistant urogenital mycoplasmas and ureaplasmas has been gradually increasing over the years, leading to greater concern for accurate diagnosis and treatment. In this study, the antimicrobial resistance trends in Greece were analyzed using 2992 Ureaplasma spp. and 371 M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!