This study examines the genetic relationships between the recently emerged H1N2 swine influenza virus and viruses of H1N1 and H3N2 subtypes, and the extent of protection against H1N2 challenge in pigs immune after infection or vaccination with the other subtypes. There was low amino acid homology (70.4-71.9%) in the haemagglutinin (HA) gene between H1N1 viruses used for primary infection or vaccination and the H1N2 challenge strain, with 94-99 amino acid changes between these viruses involving all five antigenic sites. The NA genes of H3N2 viruses used for primary infection or vaccination showed higher amino acid homology with H1N2 (88.3-92.6%), while nucleoprotein (95.5-96.3% nucleotide identity) and matrix (96.8-98.4%) genes were most conserved between the three subtypes. Pigs immune as a result of intranasal inoculation with either H1N1 or H3N2 showed partial clinical protection against H1N2 challenge, and nasal virus excretion was 2 days shorter than in naive pigs. Moreover, dually infected (H1N1 + H3N2)-immune pigs showed complete clinical protection and H1N2 virus replication in the lungs and nasal secretions was either undetectable or markedly reduced. In contrast, a double vaccination with a commercial H1N1 and H3N2-based vaccine did not protect against H1N2 challenge. Haemagglutination inhibition (HI) or virus neutralisation (VN) tests of swine sera revealed little if any antigenic cross-reactivity between subtypes. These data suggest that serum HI or VN antibodies are not essential in heterosubtypic protection, but that mucosal or cellular immunity are probably involved. It is still unknown whether this type of cross-subtype protection will also occur in infection-immune pigs in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2004.02.023 | DOI Listing |
Vaccine
December 2024
Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address:
In Brazil, at least four lineages of influenza A virus circulate pig population: 2009 H1N1 flu pandemic (pH1N1), human-seasonal origin H3N2, H1N1 and H1N2 (huH1 lineages) viruses. Studies related to the occurrence of swine influenza A virus (SIAV) in Brazilian herds have been detecting an increase of occurrence of huH1 lineages. This study aimed to construct recombinant vaccines against the huH1N1 virus and test the immunogens in a murine model.
View Article and Find Full Text PDFVaccine
December 2024
USDA-ARS, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, USA. Electronic address:
Influenza A viruses (IAV) of subtypes H1N1, H1N2, and H3N2 are endemic in US domestic swine populations and contribute to significant economic losses annually and pose a persistent pandemic threat. Adjuvanted, whole-inactivated virus (WIV) vaccines are the primary countermeasure to control IAV in swine. The compositions of these vaccines are matched for hemagglutinin (HA) strain and content, often ignoring the other IAV glycoprotein, the neuraminidase (NA).
View Article and Find Full Text PDFNPJ Vaccines
July 2024
Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.
Vaccines (Basel)
June 2024
Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
This study focuses on the development and characterization of an intranasal vaccine platform using adjuvanted nanoparticulate delivery of swine influenza A virus (SwIAV). The vaccine employed whole inactivated H1N2 SwIAV as an antigen and STING-agonist ADU-S100 as an adjuvant, with both surface adsorbed or encapsulated in mannose-chitosan nanoparticles (mChit-NPs). Optimization of mChit-NPs included evaluating size, zeta potential, and cytotoxicity, with a 1:9 mass ratio of antigen to NP demonstrating high loading efficacy and non-cytotoxic properties suitable for intranasal vaccination.
View Article and Find Full Text PDFVirology
August 2024
Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
MicroRNAs (miRNAs) contribute to post-transcriptional modulation of the host response during influenza A virus (IAV) infection and may be involved in shaping disease severity. Differential disease severity was achieved in two groups of pigs by immunization of one group with a commercial swine IAV vaccine prior to heterologous IAV (H1N2) challenge of both groups. Lung tissue was harvested 1, 3, and 14 days after challenge and miRNA expression was quantified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!