The three dimers 3, 4, and 5 of mitomycin C (MC), a natural antibiotic and cancer chemotherapeutic agent, were synthesized in which two MC molecules were linked with -(CH(2))(4)-, -(CH(2))(12)-, and -(CH(2))(3)N(CH(3))(CH(2))(3)- tethers, respectively. The dimeric mitomycins were designed to react as polyfunctional DNA alkylators, generating novel types of DNA damage. To test this design, their in vitro DNA alkylating and interstrand cross-linking (ICL) activities were studied in direct comparison with MC, which is itself an ICL agent. Evidence is presented that 3-5 multifunctionally alkylate and cross-link extracellular DNA and form DNA ICLs more efficiently than MC. Reductive activation, required for these activities, is catalyzed by the same reductases and chemical reductants that activate MC. Dimer 5, but not MC, cross-linked DNA under activation by low pH also. Sequence specificities of cross-linking of a 162-bp DNA fragment (tyrT DNA) by MC, 3, and 5 were determined using DPAGE. The dimers and MC cross-linked DNA with the same apparent CpG sequence specificity, but 5 exhibited much greater cross-linking efficacy than MC. Greatly enhanced regioselectivity of cross-linking to G.C rich regions by 5 relative to MC was observed, for which a mechanism unique to dimeric MCs is proposed. Covalent dG adducts of 5 with DNA were isolated and characterized by their UV and mass spectra. Tri- and tetrafunctional DNA adducts of 5 were detected. Although the dimers were generally less cytotoxic than MC, dimer 5 was highly and uniformly cytotoxic to all 60 human tumor cell cultures of the NCI screen. Its cytotoxicity to EMT6 tumor cells was enhanced under hypoxic conditions. These findings together verify the expected features of the MC dimers and warrant further study of the biological effects of dimer 5.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm049863jDOI Listing

Publication Analysis

Top Keywords

dna
12
cross-linked dna
8
mitomycin dimers
4
dimers polyfunctional
4
polyfunctional cross-linkers
4
cross-linkers dna
4
dna three
4
dimers
4
three dimers
4
dimers mitomycin
4

Similar Publications

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.

Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Background: Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis.

Methods: A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!