In vivo evaluation of a biomimetic apatite coating grown on titanium surfaces.

J Biomed Mater Res A

Department of Orthopaedics, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, MSB G-574, Newark, NJ 07103, USA.

Published: June 2004

Osteoconductive mineral coatings represent an established technology for enhancing the integration of orthopedic implants with living bone. However, current coatings have limitations related to fabrication methods, attachment strength to metal substrates, and in vivo performance. Low temperature biomimetic growth is a coating technique wherein the device to be coated is immersed in a meta-stable saturated solution of the coating constituents and growth of the coating is then allowed to proceed on the surface of the device. This study focused on the in vivo evaluation of a biomimetic apatite coating fabricated under these conditions. The experiment was designed to specifically test the amount of bone ingrowth into the coated channels versus the uncoated channels of an established bone chamber system, with emphasis placed on the amount of bone present on the coupon surface. Three types of measurements were taken on each channel: linear ingrowth %, area ingrowth %, and continuous bone apposition %. The experiments demonstrated that under controlled conditions, the apatite coating appears to resorb in 8 weeks and did stimulate early osseointegration with the metal surface with a reduction in fibrous tissue encapsulation. This coating may, therefore, be useful in facilitating early bone ingrowth into porous surfaces without the potential for coating debris, macrophage infiltration, fibrous tissue encapsulation, and eventual coating failure as may occur with current plasma-sprayed hydroxapatite coating techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.30028DOI Listing

Publication Analysis

Top Keywords

apatite coating
12
coating
10
vivo evaluation
8
evaluation biomimetic
8
biomimetic apatite
8
growth coating
8
amount bone
8
bone ingrowth
8
fibrous tissue
8
tissue encapsulation
8

Similar Publications

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) nanocoatings on titanium alloys (e.g. Ti6Al4V) have been used for prosthetic orthopaedic implants in recent decades because of their osseointegration, bioactivity, and biocompatibility.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!